
Performance Evaluation 127–128 (2018) 194–211

Contents lists available at ScienceDirect

Performance Evaluation

journal homepage: www.elsevier.com/locate/peva

Weighted fair caching: Occupancy-centric allocation for
space-shared resources
Lianjie Shi, Xin Wang, Richard T.B. Ma ∗, Y.C. Tay
School of Computing, National University of Singapore, Singapore

a r t i c l e i n f o

Article history:
Available online 23 October 2018

Keywords:
Caching policy
Occupancy rate
Resource allocation

a b s t r a c t

Traditional cache replacement policies such as LRU and LFU were often designed with the
focus on efficiency and aimed atmaximizing the hit rates. However, the resource owners of
modern computing systems such as cloud infrastructures and content delivery networks
often have new objectives such as fairness and revenue to be optimized rather than the
overall hit rate. A general resource management framework that allows resource owners
to determine various resource allocations is desirable. Although such a mechanism like
Weighted Fair Queueing (WFQ) exists for indivisible time-shared resources such as CPU
and network bandwidth, no such counterpart exists for space-shared resources such as
cache and main memory. 1

In this paper, we propose Weighted Fair Caching (WFC), a capacity-driven cache policy
that provides explicitly tunable resource allocations for cache owners in terms of the
occupancy rates of contents. Through analysis of the continuous-timeMarkov Chainmodel
of cache dynamics, we derive the closed-form occupancy rates as a function of the weights
of contents, and various properties such asmonotonicity and scaling ofWFC.We show that
WFC can be used to provide fair sharing of cache space among contents, as well as class-
based service differentiations. We evaluate the performance of WFC using real data traces
from twomajor video providers. We find that, compared to traditional cache policies, WFC
provides better fairness while sacrificing an acceptable amount of hit rates.

© 2018 Elsevier B.V. All rights reserved.

1. Introduction

Research on management and allocation of space-shared resources such as cache, memory and disk space have been
centered around the placement and replacement of contents. In this paper, we mainly refer to space-shared resources
as caches, and resource management mechanisms then appear as replacement policies. Since hit rate directly influences
the latency or response time of content requests, traditional replacement policies such as least recently used (LRU) and
least frequently used (LFU) were designed to maximize the overall hit rate of content requests. These designs and analysis
were primarily focused on the system efficiency, assuming that the resource owner’s goal is to optimize the system
performance. Under the traditional replacement policies, the portion of resource occupied by consumers is usually not
explicitly controllable by the resource owner, butmore dependent on the consumers themselves. For instance, if the resource
owner, i.e., the cache provider, has adopted LFU policy, some content that is requested more frequently than any one else

∗ Corresponding author.
E-mail addresses: shilian@comp.nus.edu.sg (L. Shi), xin.wang@comp.nus.edu.sg (X. Wang), tbma@comp.nus.edu.sg (R.T.B. Ma), dcstayyc@nus.edu.sg

(Y.C. Tay).
1 This work was supported in part by Singapore MOE grant T1251RES1710.

https://doi.org/10.1016/j.peva.2018.09.011
0166-5316/© 2018 Elsevier B.V. All rights reserved.

https://doi.org/10.1016/j.peva.2018.09.011
http://www.elsevier.com/locate/peva
http://www.elsevier.com/locate/peva
http://crossmark.crossref.org/dialog/?doi=10.1016/j.peva.2018.09.011&domain=pdf
mailto:shilian@comp.nus.edu.sg
mailto:xin.wang@comp.nus.edu.sg
mailto:tbma@comp.nus.edu.sg
mailto:dcstayyc@nus.edu.sg
https://doi.org/10.1016/j.peva.2018.09.011

L. Shi et al. / Performance Evaluation 127–128 (2018) 194–211 195

can stay in the cache almost permanently. In contrast, some other consumer, i.e., content provider, may never get the chance
to keep its contents in the cache.

However, besides optimizing system efficiency, the resource owners usually have some new goals, e.g., maximizing
revenues or achieving fairness, inmanymodern contexts, which require explicitly controllable quality of the caching service.
For example, content delivery networks (CDNs) and access ISPs provide in-network caching services for their customers,
whose willingness to pay and content characteristics might be different. Under this context, the resource owners’ goal is
often to maximize their revenues, under which differentiated cache resource is expected to be allocated to the consumers
based on their willingness to pay and usage of cache space. For another example, enabled by virtualization technologies, the
providers of cloud infrastructures can share resources amongmultiple paying customers. Under this multi-tenant context, a
resource owner’s goalmight be to guarantee the fairness among its customers. In the allocation of time-shared resources such
as network bandwidth, there have beenwell-defined notions such asmax–min fairness andα-fairness, aswell as discussions
and debates about topics such as net neutrality. Things are not the same for space-shared resources, as the design of existing
efficiency-targeted policies did not take fairness into consideration. In this paper, we refer to fairness as equal share of the
resource being allocated to consumers if they pay the same amount to the resource owner. To achieve such fairness, the
resource owner hopes to explicitly control the portion of resource, i.e., amount of cache space allocated to consumers.

Given the above, what needs to be designed to address these new goals boils down to a new resource management
framework that looks beyond hit rate and allows the owner to explicitly allocate its limited resource among competing
customers. Such frameworks, e.g., Weight Fair Queueing (WFQ) [1,2], exist for indivisible time-shared resources such as
network bandwidth and CPU, but not for space-shared resources.

In this paper, we proposeWeighted Fair Caching (WFC), a new resourcemanagement framework that allows cache owners
to achieve various new goals such as providing fairness or controlling resource allocation among contents. WFC is a type
of capacity-driven policy under which content evictions occur only upon cache misses and thus cache slots are always fully
utilized.WFC also belongs to the family of probabilisticMarkovian policies that do not require past history and generalize the
deterministic cases. However, in contrast to traditional replacement policies,missed contentsmay not be cached underWFC.
Rather than only focusing on hit rate, WFC explicitly controls occupancy rates through assigning weights to the individual
content items. Because the sum of occupancy rates over all contents equals the cache size, which is often fixed in the short
term, cache owners can make various resource allocation decisions by tuning the weights of content items under WFC.

We study the class of probabilistic Markovian policies under the commonly used Independence Reference Model (IRM) [3],
and characterize the occupancy time of contents that follows a phase-type distribution (Theorem 1), and its relationships
with the hit rate and occupancy rate (Theorem 2). Through these general results, we further analyze the properties of WFC
and derive following theoretical results.

• We derive the closed-form of steady-state distribution of Continuous-Time Markov Chain (CTMC), the mean occupancy
time and occupancy rate of content as functions of weights under WFC (Theorem 3).

• Wederive themonotonicity and scaling properties (Theorems 4 and 5), and show that the occupancy rate is determined
by the normalized weight under WFC (Theorem 6).

• We show that class-based service differentiation can be achieved under WFC (Theorem 7).

We further evaluate the performance of WFC using real data trace from a major video content provider. We find that

• WFC achieves fairer resource allocations among contents compared to traditional cache policies, while sacrificing an
acceptable amount of hit rates for fairness.

• WFC provides effective service differentiation among different types of contents.

We believe that WFC provides a novel framework for cache providers to better manage resources and achieve new goals.

2. Related work

System resources can be categorized [4] into time-shared resources such as CPU and network bandwidth, and space-shared
resources such as cache and main memory. In this section, we discuss related resource management schemes for these two
types of resources separately.

2.1. Indivisible time-shared resources

Most research of the scheduling of indivisible resources focused on work-conserving mechanisms, under which resource
will not be idle with the presence of unfinished workload. Parekh and Gallager [1] studied Generalized Processor Sharing
(GPS) in the scope of network bandwidth allocation, while Demers et al. [2] proposed the packet-based version under the
name ofWeighted Fair Queueing (WFQ). These algorithms achieve advantages over First Come First Serve (FCFS) such as fair
bandwidth allocation and shorter delay. Bennett and Zhang [5] further proposedWorst-caseWeighted Fair Queueing (WF2Q)
to address the possible discrepancies between service provided under GPS and WFQ. Goyal et al. [6] proposed another fair
queueing mechanism called Start-time Fair Queueing (SFQ), which is believed to be better suited for integrated services
networks than WFQ. As for CPU scheduling, Stoica et al. [7] proposed a proportional share resource allocation algorithm,
which assigns a weight to processes that determines the share of resource to receive. Waldspurger and Weihl proposed
lottery [8] and stride [9] scheduling mechanisms. The former is probabilistically fair for time-shared resources such as
processor time and the latter provides a deterministic alternative. Although plenty of mechanisms exist for explicit resource
allocation for indivisible time-shared resources, this is not the case for space-shared ones.

196 L. Shi et al. / Performance Evaluation 127–128 (2018) 194–211

2.2. Divisible space-shared resources

Most of the management schemes for space-shared resources focused on efficiency in terms of hit rate, e.g., LRU, and
simplicity in implementation, e.g., FIFO [10], or randomized policies [11]. However, exact analysis for such policies is difficult
due to the coupling among contents. Che et al. [12] proposed an approximation that identifies a characteristic time for each
cache. Furthermore, time-driven policies such as TTL-based caches have been studied. As mentioned in Dehghan et al. [13],
TTL-based caching treats contents in a decoupled manner, reducing the theoretical complexity and making exact analysis
possible. Fofack et al. [14] and Berger et al. [15] carried out performance evaluation and exact analysis of TTL-based network
of caches. Ma and Towsley [16] designed a pricing mechanism to maximize the utility of a single cache. Ferragut et al. [17]
also considered optimization of TTL-based cache, while under heavy-tailed demands.

Nevertheless, time-driven policies induce a limitation that occupancy time requirements might not always be fulfilled
due to the variable demands over a fixed number of cache slots. Also, the cache may not be fully utilized, which bears a
resemblance to the non-work-conserving scheduling of time-shared resources. In contrast, similar to the work-conserving
scheduling, there exist caching policies that evict contents only upon cache misses when the cache is full, which we
refer to as capacity-driven policies. Deterministic policies such as LRU, LFU and FIFO belong to this class of policies, but
only approximate analyses [10,12] are available. On the other hand, Quinones et al. [18] indicated that randomized cache
replacement eliminates dependencies on access history, and probabilistic analysis on cache behavior is possible. Moreover,
Psounis and Prabhakar [19] showed that LRU policy might not be suitable for web caches, while randomized algorithm can
provide approximation without the need to maintain complicated data structures. Waldspurger and Weihl [8] proposed
a weighted random replacement policy based on an inverse lottery design. WFC is a capacity-driven, probabilistic and
weighted mechanism. We will provide an analysis of both WFC and the seemingly similar Weighted Random Replacement
(WRR) mechanism and compare their differences in Section 3.

Not many previous works were concerned about the fair sharing of cache. Wang et al. [20] developed a heuristic caching
solution that considers both the performance and fairness in the context of information centric networking (ICN). Pu
et al. [21] proposed FairRide, a near-optimal solution for fair allocation of memory cache among multiple users with shared
files. While these works focused on fairness achieved through probabilistic blocking or expected delay,WFC can be regarded
as a general resource allocation framework, under which both fair-sharing and service differentiations can be achieved.
Hargreaves et al. [22] built aNews Feedmodel of online social networks inspired by TTL-based cache and studied occupancies
of publishers under α-fairness. WFC, on the other side, is a policy designed for general caches. Although the occupancy is
also treated as one important metric, WFC achieves different allocations by tuning the probabilities of replacement, rather
than deriving the optimal TTLs. The news feed also differs from the actual cache in several aspects, e.g., it is triggered by new
posts from publishers, instead of user requests, and it may hold multiple copies from one publisher, instead of at most one.

3. Weighted fair caching mechanism

Without loss of generality, we consider a scenario where there are N available cache slots with equal size and a setM of
content items, each of which can be stored in a cache slot. In reality, contents such as videos may not have the same size;
however, they are often divided into data chunks of similar sizes in transit and when being stored. We denote each content
item by i = 1, 2, . . . ,M . When M > N , contents need to compete for the limited cache resources, and we will study the
caching policies designed for such scenarios. In particular, we focus on capacity-driven policies, under which contents are
not evicted until the capacity of the cache is fully utilized and new requests generate cache misses.

3.1. Probabilistic Markovian caching policies

We denote the state of the cache at any time t by S(t) = s, which describes the set s ∈ M of cached content items.
Meanwhile, content items not cached are denoted by sc = M \ s. All the possible states are denoted by S , and all the states
that contain content item i are denoted by Si, i.e., S := {s : s ⊂ M, |s| = N} and Si := {s : i ∈ s ∈ S} ⊂ S , and Sc

i = S \ Si.
For any capacity-driven policy, it needs to determine the state of the cache only when a new request of i arrived at time t
generates a cache miss, i.e., i /∈ S(t). We consider the class of probabilistic Markovian policies defined as follows.

Definition 1. A probabilistic Markovian policy for capacity-driven cache is defined for any cache state s and content i /∈ s,
the probability Pk(s, i) of evicting any content k for all k ∈ s.

The above definition of a caching policy is Markovian because possible cache evictions only depend on the current cache
state S(t) = s and the requested content i, but do not rely on any history S(t ′) for any t ′ < t . This greatly simplifies the
implementation of cache policies in practice. Furthermore, probabilistic policies also generalize the deterministic policies,
under which one of the probabilities Pk(s, i) is set to be 1. Notice that

∑
k∈s Pk(s, i) might be strictly less than 1, which implies

that with probability 1 −
∑

k∈s Pk(s, i), no existing content is evicted and the newly requested content i will not be cached;
and therefore, the cache state remains the same.

Content providers often care about the cache performance, which indicates whether it is worth purchasing the caching
service. We denote the hit rate of content i by hi, defined as the percentage of requests of i that result in cache hits. Most
prior work on caching focused on the hit rate, while not much has referred to the occupancy rate, defined as follows.

L. Shi et al. / Performance Evaluation 127–128 (2018) 194–211 197

Fig. 1. State transition diagram of the CTMC when (M,N) = (4, 2).

Definition 2. The occupancy rate oi of any content item i is the percentage of time that i has been cached, defined as

oi = lim
T→+∞

∫ T
0 1{i∈S(t)}dt

T
. (1)

We want to emphasize that occupancy rate is an equally important performance metric that characterizes the cost of
caching from the cache provider’s perspective, and can be regarded as the resource allocated to the competing content
items. We will evaluate the cache performance in terms of both the hit and occupancy rates of the content items.

We consider the commonly used Independence Reference Model (IRM) [3], under which we assume requests for i follow
a Poisson process with arrival rate λi. Later, we will also evaluate results from trace-driven simulations where the arrival
process does not strictly follow the IRM. Owing to the memoryless property, we can treat each state of the cache as a state
of a Continuous-Time Markov Chain (CTMC), and thus the size of the state space is |S| =

(M
N

)
. For a CTMC, one state can

transit into another with certain transition rate; the transition rate is 0 if two states do not communicate directly. When
there is only one different content item between states s and s′, for example, s′ \ s = {i} and s \ s′ = {j}, then there exists
a valid state transition from s to s′ if the arrival of i replaces j in the cache. The corresponding state transition rate follows
qs,s′ = Pj(s, i)λi such that s′ is the next state according to the caching policy determined by Pj(s, i). Fig. 1 shows the state
transition diagram of the CTMC of an example of (M,N) = (4, 2). The state transition rates can be written as a transition
rate matrix Q = (qs,s′)l×l, l =

(M
N

)
, based on which we can derive the steady-state distribution π = (· · · , πs, . . .) that satisfies

πQ = 0 and π1 = 1. πs denotes the probability that the cache is in state s in a steady-state after a long-run, which can also
be interpreted as the percentage of time that the cache is in state s. To derive the occupancy rate oi, we are also concerned
about the behavior of an individual content item i each time it gets cached, especially the occupancy time Ti defined as the
random amount of time that i is cached until it gets evicted upon a cache replacement.

Theorem 1 (Occupancy Time). Ti follows a phase-type distribution PH(αi,Qi), where Qi is the sub-matrix of Q that only includes
the transition rates between the states in Si and αi = (. . . , αs, . . .) is the initial distribution vector that follows

αs =

∑
r∈Sc

i
πrPr\s(r, i)∑

r ′∈Sc
i
πr ′

, ∀s ∈ Si. (2)

The average occupancy time satisfies

E[Ti] =
1
λi

∑
s∈Si

πs∑
r∈Sc

i
πr
. (3)

Theorem 12 shows that the occupancy time can be characterized by the phase-type distribution [23]. Given the initial
distribution vector αi where αs stands for the probability that the initial state is s ∈ Si when i gets cached, and Qi is the
state transitionmatrix between the states in Si, the phase-type distribution PH(αi,Qi) describes the distribution of time until
entering the absorbing state, which in our case refers to when i gets replaced from the cache and the CTMC transits to some
state r ∈ Sc

i . Since there should be only one absorbing state, for content item i, if we treat all r ∈ Sc
i as an aggregated state

S0, such that any state transition to any state r is considered as a state transition towards S0, then S0 is the absorbing state.
Therefore, when i gets cached, the process enters the initial state; and when i gets evicted, the process enters the absorption
state. By using the average occupancy time of Theorem1,we can further connect the occupancy rate, hit rate and steady-state
distribution as follows.

2 Proofs of theorems can be found in Appendix A.

198 L. Shi et al. / Performance Evaluation 127–128 (2018) 194–211

Theorem 2 (Occupancy Rate and Hit Rate). Under IRM, the hit rate hi and occupancy oi of any content item i satisfy

hi =
λiE[Ti]

λiE[Ti] + 1
= oi =

∑
s∈Si

πs, ∀i ∈ M. (4)

Theorem 2 shows that the hit rate and occupancy rate of any content item are the same under the IRM, which is due to
the fundamental property of Poisson Arrivals Sees Time Averages (PASTA). Althoughwewill primarily focus on the design of
cachingpolicies that allocate resource among contents in termsof their occupancy rates, the hit rates are positively correlated
with the occupancy rates in general.

3.2. Weighted caching policies

An intuitive subclass of the probabilistic Markovian policies that allows us to explicitly differentiate contents isweighted
policies, under which each content i is assigned a non-negative weight wi and the probabilities Pk(s, i) become a function of
the weights wi and wks for all k ∈ s. If a weighted policy always guarantees that missed contents are cached, it leads to a
replacement policywith the simplest form of aWeighted Random Replacement (WRR) [8] policy defined as

Pk(s, i) =
wk

Ws
, ∀ k ∈ s, where Ws =

∑
j∈s

wj. (5)

In this work, we propose a new policyWeighted Fair Caching (WFC) that does not always cache missed contents, defined as

Pk(s, i) =
wk

Ws + wi
, ∀k ∈ s. (6)

The difference of the above two lies in that under WFC, the requested content item i is also involved in the decision of
cache replacement. In particular, content imight not be cachedwith probabilitywi/(Ws +wi) underWFC, proportional to all
the eviction probabilities of content items existing in the cache. Regardless of whether the arrival process strictly follows the
IRM assumption, WFC is implemented by simply associating content items with weights which determine the probability
of being replaced or not cached. Nonetheless, the closed-form results derived from Markovian analysis may not still follow
without the IRM assumption.

Theorem 3 (Occupancy Metrics under Weighted Policies). The steady-state distributions of the CTMC under WRR and WFC,
respectively, satisfy

πRR
s =

Wsφs∑
r∈S Wrφr

and π FC
s =

φs∑
r∈S φr

,

where Ws =
∑

j∈swj and φs =
(∏

j∈s λj
) (∏

j∈sc wj
)
. The expected occupancy times under WRR and WFC satisfy

E[T RR
i] =

1
λi

∑
s∈Si

Wsφs∑
r∈Sc

i
Wrφr

, E[T FC
i] =

1
λi

∑
s∈Si

φs∑
r∈Sc

i
φr
.

The occupancy rates under WRR and WFC satisfy

oRRi =

∑
s∈Si

Wsφs∑
r∈S Wrφr

and oFCi =

∑
s∈Si

φs∑
r∈S φr

. (7)

Theorem 3 derives the closed-form of occupancy time and occupancy rate of any content item i ∈ M as a function of
the arrival rates and weights of all contents. Notice that if all the weights are strictly positive, i.e., wi > 0 for all i ∈ M, the
above results can be rescaled by dividing both the numerators and denominators by W̃ =

∏M
i=1wi, and therefore, φs could

be replaced by the more intuitive notation ϕs defined as

ϕs = φs/W̃ =

∏
i∈s

λi/wi,

which only depends on the arrival rates and weights of contents that are cached under state s. The above results also
generalize the case of any content i permanently cached when wi is set to 0 under WFC, because we will have φs = 0
for all s /∈ Si, and therefore, its occupancy rate satisfies oFCi = 1. To compare WRR and WFC, we consider the case of N = 1
as follows.

Corollary 1. Consider the case of N = 1. According to Theorem 3, the occupancy rates under WRR and WFC are

oRRi =
λi∑M
j=1 λj

and oFCi =
λi

∏
k̸=iwk∑M

j=1 λj
∏

k̸=jwk
.

L. Shi et al. / Performance Evaluation 127–128 (2018) 194–211 199

Corollary 1 shows that the occupancy rate oRRi under WRR only depends on the arrival rates λjs, but not the weights wjs.
This implies that weights cannot be used to control the occupancy rates across different contents. The fundamental reason
is that any missed item is cached for sure, and therefore, a content item’s arrival rate naturally provides a lower bound of its
occupancy rate, regardless of the weight associated with it. If we focus on the non-trivial cases where wi > 0 for all i ∈ M
under WFC, the occupancy rate can be simplified as

oFCi =
ϕi∑M
j=1 ϕj

=
λi/wi∑M
j=1 λj/wj

.

From the above equation, we observe that the weights could be used to achieve any distribution of occupancy rates. In
particular, any occupancy rate vector o = (o1, . . . , oM) that satisfies

∑M
i=1 oi = 1 and oi > 0 for all i ∈ M can be achieved if

each weight wi is set to be proportional to λi/oi. Through this comparison, we observe that WRR is somehow limited if one
wants to use weights to control the resource allocation among the contents in terms of occupancy rate, while WFC provides
more flexibility for that purpose. Thus, in the following sections, we will focus on WFC (and omit this superscript in the
notation) and study how the weights can be used to allocate cache resources in terms of the occupancy rates for content
items.

4. Resource allocation under WFC

In the previous section,we derived the occupancy rates of contents underWFC via an analysis of the underlying CTMC and
showed thatweightswis can be used to affect the cache performance for contents in terms of their occupancy rates ois, which
equal the corresponding hit rates his under IRM. Because capacity-driven policies always keep all N cache slots occupied
at any time, by Definition 2, the occupancy rates satisfy

∑
i∈M oi = N , which holds even without the IRM assumption.

Consequently, we can regard the result of any WFC policy as a resource allocation solution o ∈ O, where the domain of
resource allocation is defined as

O = {o :

∑
i∈M

oi = N and oi > 0 ∀i ∈ M}.

From a cache provider or CDN’s point of view, limited cache space is valuable resources that can bemonetized, and the design
of caching policies should be driven by business models. Since the occupancy rate of a content item can be regarded as its
incurred cost to the cache provider, and suppose the provider of content i is charged an amount Ri(oi) based on the cost oi,
the cache provider generally wants to find an optimal allocation o∗

∈ O that maximizes the aggregate revenue
∑

i∈M Ri(oi).
In this regard, WFC provides a useful mechanism for cache providers to realize various resource allocations by tuning the
weights of the contents, shown as the following results.

Theorem 4 (Monotonicity of WFC). For any content i ∈ M,

∂oi
∂wi

< 0 and
∂oi
∂wj

> 0, ∀j ̸= i. (8)

Theorem4 intuitively states thatwhen theweight of any content i increases unilaterally, the occupancy rate of idecreases,
while that of all other contents increases. This implies that by adjusting the weights, one can steer the distribution of
occupancy rates from some contents to others.

As an important desirable property of resource allocation, fairness is often a concern when resources are shared among
competing customers that pay the same, and achieving equal occupancy rates for them are required. This goal cannot be
fulfilled by traditional replacement policies such as LRU and LFU that focus on the aggregate hit rate over all contents. The
following result shows that weights can be set easily to achieve a fair sharing of cache among all contents under WFC.

Theorem 5 (Scaling of WFC). Suppose o ∈ O is achieved for arrival rates λ = (λ1, . . . , λM) by using the weights w =

(w1, . . . , wM) under WFC. Under any new arrival rates λ′
= (λ′

1, . . . , λ
′

M), the same occupancy rates of the contents can be
achieved if the new weightsw′

= (w′

1, . . . , w
′

M) satisfy

w′

i =
λ′

i

λi
wi, ∀i ∈ M. (9)

Theorem 5 shows that in order to maintain the same allocation of occupancy rates for contents when their arrival rates
change, one only needs to rescale each content i’s weight such that the ratio of λi and wi is kept a constant. Because with
equalweights, contentswill obtain the same occupancy ratewhen their arrival rates are the same, Theorem5 further implies
that a fair allocation among contents can be achieved by setting the weights proportional to the corresponding arrival rates.
Consequently, we can decouple the impact of arrival rates on the resulting occupancy rates by focusing on the normalized
weight vi = wi/λi without loss of generality. Notice that the fair allocation of equal occupancy rates is achieved when the
normalized weights of contents are equal.

200 L. Shi et al. / Performance Evaluation 127–128 (2018) 194–211

Fig. 2. Occupancy rates of contents belonging to 2 classes under differentM,N or M1/M2 , when v̂2/v̂1 ratio is varying.

Theorem 6 (Impact of Normalized Weight on Occupancy). For any content i ∈ M, its occupancy rate oi satisfies

oi =
v̄−i

vi + v̄−i
(10)

where v̄−i is a function of the normalized weights vjs of all content items other than i, defined as

v̄−i =

∑
s∈Si

∏
j∈s\{i} v

−1
j∑

r∈Sc
i

∏
k∈r v

−1
k

=

∑
s∈Si

∏
j∈sc∪{i} vj∑

r∈Sc
i

∏
k∈rc vk

. (11)

Theorem 6 establishes a relationship between any content i’s occupancy rate oi and its normalized weight vi, through
an aggregate information v̄−i of all other contents. In general, v̄−i can be regarded as a form of weighted average of the
normalized weights vjs of the competing contents. As an illustration of (M,N) = (4, 2), we have v̄−1 = (v2v3 + v2v4 +

v3v4)/(v2 + v3 + v4). To achieve any target occupancy rate oi, Theorem 6 implies that one can simply set the weight to be
vi = v̄−i(1 − oi)/oi.

By far, we know that equal normalizedweights induce a fair resource allocation, while varying them leads to fine-grained
distributions of occupancy rates among contents. In practice, contents are often classified into groups and served differently.
This could be due to the nature of contents, e.g., inelastic contents that are sensitive to delays vs. elastic contents that are
less sensitive to delay, or different types of content providers that have different willingness to pay for caching services. It
is desirable to be able to prioritize certain contents with higher occupancy rates so as to reduce the retrieval time for them.
By utilizing WFC, we can create differentiated service classes such that the occupancy rates of contents within any class are
the same, while those across classes can be differentiated. In general, we consider K service classes. We denote the number
of content items served under any class k by Mk and define M =

∑K
k=1 Mk. To achieve the same occupancy rate within any

class k, we ensure that the normalized weights of contents equal a constant, denoted by v̂k. In other words, the weight wi
is set to be λiv̂k for any content i served under class k. We denoted the occupancy rate of contents under class k by ôk and
derive it as a function of the weights v̂ks as follows.

L. Shi et al. / Performance Evaluation 127–128 (2018) 194–211 201

Theorem7 (Class-Based Allocation underWFC). Let n = (n1, . . . , nK) denote a partition of cache space where each nk denotes the
number of cache slots occupied by content items from class k, and define two domains of such partitions as N = {n :

∑K
k=1 nk =

N, 0 ≤ nk ≤ Mk, ∀k = 1, . . . , K } andNk = {n ∈ N : nk ̸= 0}. The occupancy rate ôk for contents in class k satisfies ôk = Ok/O,
where

Ok =
1
Mk

∑
n∈Nk

nk

∏K
l=1

(Ml
nl

)∏K
l=1 v̂

nl
l

and O =

∑
n∈N

∏K
l=1

(Ml
nl

)∏K
l=1 v̂

nl
l

.

Theorem 7 shows that v̂ks play the role of weights in the denominators for each combinatorial term
∏K

l=1

(Ml
nl

)
that

corresponds to a partition n of cache for the service classes. To further illustrate the impact of various parameters such
as the cache size N , aggregate content size M , the class size Mk and the normalized weight of class v̂k on the class-based
resource allocation, we consider a two-class scenario, i.e., K = 2, and plot the occupancy rates ô1 and ô2 under different
settings in Fig. 2. We assume that class 1 is a prioritized class and therefore, we increase the ratio v̂2/v̂1 from 1 along the
x-axis. In all three subfigures, we observe that fair allocations, i.e., ô1 = ô2 = N/M , are achieved between the two service
classes when v̂2/v̂1 = 1, and ô1 increases with the ratio v̂2/v̂1 while ô2 decreases, which can be inferred from Theorem 4. In
Fig. 2(a), we vary the ratio ofM1/M2 under a fixed total sizeM and observe that both ô1 and ô2 decreasewith the ratioM1/M2.
Intuitively, when v̂2 > v̂1, ô2 < ô1 and decreasing the ratio of M1/M2 must increase ô1, because pushing more contents to
the lower-quality class will improve the occupancy rate of the higher class. Furthermore, asM1ô1 +M2ô2 = N always holds,
the corresponding occupancy rate ô2 of the lower class also increases. Under a fixed ratio of M1/M2 = 1, we vary the cache
size N and content size M in Figs. 2(b) and 2(c), respectively. We observe that both ô1 and ô2 increase with N but decrease
withM , because a larger cache provides higher occupancy rates while a larger number of contents increases the competition
and reduces the occupancy rate of any individual content. In conclusion, in order to achieve a higher occupancy rate ôk for a
service class k, it is possible to reduce the ratio of the normalized weight, i.e., v̂k/

∑K
l=1 v̂l, since the chance of contents from

class k being replaced is reduced, or decrease the class sizeMk if it is a high-priority class. Although content sizeM and cache
size N are usually fixed, their impacts on the occupancy rates are also understood intuitively.

5. Trace-Driven evaluation

In the previous sections, we provide theoretical properties of WFC under the IRM assumption. In this section, we further
evaluate the performance of WFC using trace data from two different major video content providers. We use the word video
and content interchangeably in this section. In particular, we first explain the raw datasets and the data cleaning process,
and show that the characteristics of the dataset deviates from the IRM assumption substantially. Our implementation of
WFC depends solely on the different weights assigned to content items, regardless of whether the IRM assumption is strictly
satisfied. We then proceed to (1) evaluate the fairness of WFC by comparing it with traditional capacity-drive policies such
as LRU and FIFO, and (2) demonstrate the class-based service differentiation enabled by WFC.

5.1. Dataset

Our datasets came from two major Chinese video streaming service providers. Dataset A was collected throughout three
entire days, i.e., Dec. 21st to 23rd 2017, on three servers, which means there are nine trace files in total. Each of these
trace files is around 1GB in size, and each record in the data trace consists of five fields, namely the URI of the resource,
the timestamp of the request, the ISP, the requested resource size and where the requested resource was found. We take
the trace collected from server 1 on Dec. 21st for evaluation, as these trace files reflect similar request patterns. Since each
request for any resource on the server has been recorded, we first remove those not for video resources, such as requests for
.xml and .apk files. We then filter out invalid records, such as those with an empty URI, and irrelevant fields such as the ISP
and where the resource was found.

Dataset B provided dozens of different types of video contents such as movies, news clips and TV series. The raw data
was collected throughout November 2014 with a size around 780GB. As the total number of views from users is in the
order of 108 per day, we take the data trace of a typical day, i.e., Nov. 7th, for our evaluations. Each data record in the trace
contains multiple fields of information such as user’s ID, IP address, viewing duration and departure time, and video’s ID and
type. We first filter out invalid records that have 0 viewing duration or invalid video IDs. We then calculate the request time
of contents from users by subtracting their departure times with their corresponding viewing durations. We also remove
irrelevant fields in the original dataset, such as IP address and ISP name. The data records in the cleaned dataset used in our
evaluations are composed of the request time, video ID, and video type per record, and are sorted by the request times.

To take a quick glance at the datasets, we plot the distribution of inter-request durations for the most popular video
from them in Fig. 3. Popularity is measured by the total number of times that a video is requested during a day, and we
sort the videos according to their popularity. Since the x-axis and y-axis are both shown in a log-scale, we observe that the
distribution deviates largely from an exponential distribution, for either one of the datasets, which should be expected if the
IRM assumption holds for the data. Furthermore, requests for themost popular video fromDataset B arrive more frequently,
as a larger portion of inter-arrival duration appear in a smaller interval. We can also gain an insight into the distribution of
popularity of the videos. For Dataset A, the popularity distribution of the videos can be fitted by a Zipf distribution Zipf (s,N)

202 L. Shi et al. / Performance Evaluation 127–128 (2018) 194–211

Fig. 3. Proportion of inter-arrival durations over different intervals.

Fig. 4. Hit rates vs. occupancy rates for the 1000 most popular videos under WFC policy. Cache size is N = 1000.

such that out of N videos, the frequency of the video of popularity rank k is given by f (k; s,N) = k−s/
∑N

n=1 n
−s, where

N = 47010, s = 0.336925. For Dataset B, we can similarly model the popularity distribution by Zipf (0.619837, 234392).
We also implemented WFC with wi = 1 for all contents with a cache of size N = 1000 and plot the occupancy rates vs.

the corresponding hit rates for the 1000 most popular content items in the dataset in Fig. 4. The diagonal line represents the
points of hi = oi. According to Theorem 2, the hit rates should be equal to the occupancy rates if the requests follow the IRM
assumption. However, we observe that for both of the datasets, the hit rates are consistently greater than the occupancy
rates, which again indicates that the IRM assumption does not hold for our datasets.

Despite the deviation from our theoretical assumption, we can still evaluate the WFC policy with regard to fairness and
class-based resource allocation as studied in the previous section. We use both of the datasets in the evaluation of fairness.
They may differ in regard to the actual request arrival distribution, and certain format of the records, but we apply the
same cache simulation program to the trace files from them. The cleaned trace file from Dataset A contains 7291823 records
of request arrivals, with 177621 different videos involved in total. Dataset B is also used in the evaluation of class-based
resource allocation, since it explicitly provides information on the types of videos which Dataset A does not. In particular,
we choose two most representative types of videos, i.e., movies and news clips, for the rest evaluations. Other video types
are either similar to the two chosen types, or are not popular enough to provide sufficient data for separate evaluations.
The characteristics of and demands for movies and new clips are quite different, which often need to be treated in different
service classes if service differentiation is possible. For example, a movie is usually hours long and can remain continuously
popular for days or evenweeks, while a news clip only lasts for several minutes and is quite time sensitive that can only gain
attraction from the majority for a few hours. On a daily basis, users request for these types of videos for millions of times,
and the number of distinct content items are in the order of 104

∼ 105 for each type. In total, we haveM = 60506 videos of
movie and news clips viewed by users for 3944832 times. In the case of class-based service differentiation, we label news
clip as class 1 content and movie as class 2 content, whose sizes areM1 = 42587 andM2 = 17919.

L. Shi et al. / Performance Evaluation 127–128 (2018) 194–211 203

Fig. 5. Standard deviation of occupancy rates of videos under various cache sizes, using WFC with pre-determined weights or weights estimated by a
sliding window.

Fig. 6. Average hit rates of videos under various cache sizes, using WFC with pre-determined weights or weights approximated by a sliding window.

Fig. 7. Standard deviation of occupancy rates of videos under various cache sizes and different caching policies.

5.2. Evaluation of fairness

We first evaluate the fairness property of WFC. As we know from Theorem 5, equal occupancy rates can be guaranteed if
theweightswi are set proportional to the request rates λi, or equivalently equalizing the normalizedweights vi for all videos.
In the previous steps, we have already pre-processed the data trace and have obtained the popularity of each video. Hence,
we can set a determined weight for each video, as the average arrival rate of request for a video is implied by its popularity.
WedenoteWFC implemented under the pre-determinedweights byWFCdet. However,λi is not known in advance in practice.
In our implementation of WFC, we can dynamically update and keep track of λi by counting the number of arrivals within
a sliding time window. Since a cache user could require a trade-off between the accuracy of estimation and the cost of
maintaining the sliding window, we test two different lengths of the sliding window, 1 h and 10 h. We denote these two
versions of WFC by WFC1h and WFC10h respectively.

We first compare these three different versions ofWFC implementations, to see the influence of estimating λi by a sliding
window on the performance of WFC. Because capacity-driven policies always utilize all cache slots, the average occupancy

204 L. Shi et al. / Performance Evaluation 127–128 (2018) 194–211

Fig. 8. Average hit rates of videos under various cache sizes and different caching policies.

rate across all contents always equals N/M . Thus, to compare the fairness across different situations, we plot the standard
deviation of the occupancy rates over various cache sizes, i.e., from N = 1000 to 20 000, with a step size of 1000 in Fig. 5,
which provides hints on how fair a group of values are with only one value. We can notice that WFC1h has the highest value,
either for Dataset A or Dataset B, indicating that λi estimated by such a short slidingwindowmay not be accurate enough. On
the other hand, the value of WFC10h is even slightly lower thanWFCdet, for Dataset A under all measured cache sizes and for
Dataset B when N ≤ 10000, probably because the instantaneous request arrival rates approximated by the former are more
accurate than the long-term average arrival rates used in the latter for some moments if the actual request arrival process
is not identical throughout the day.

Aswe observed from Fig. 4 that hit rates do not equal occupancy rates in generalwhen the IRMassumption is not satisfied,
we plot the average hit rates of videos in Fig. 6. WFC1h shows the highest values, followed by WFC10h, for Dataset A when
N ≥ 5000 and for Dataset B when N ≥ 2000. WFCdet has noticeably lower average hit rates than the other two when the
cache size N becomes larger. By the initial design of our WFC policy, we understand it may sacrifice a bit of the hit rate
compared to some other policies that focus on the overall hit rate, to achieve fairness. Hence, as WFC1h does not perform as
well as WFC10h andWFCdet in terms of fairness, it on the other side outperforms them in hit rates. In the rest of this section,
we take WFC10h for further comparison of the performance, and refer to it as WFC for simplicity.

We then compare WFC with other well-known caching policies, such as LRU, FIFO or random replacement (RR), to see if
WFC performs the best on fairness. Therefore, we have also implemented another three caches based on LRU, FIFO and RR,
and compare them also on the standard deviation of occupancy rates and average hit rates. Similar to Fig. 5, we observe from
Fig. 7 that the standard deviation of occupancy rates is increasing over N under all the four caching policies. LRU generally
shows the largest deviation in occupancy rates, as it aims to improve the chance of hit for popular contents, thusmore popular
contents tend to achieve higher hit rates and occupancy rates; FIFO and RR share almost the same valueswhen the cache size
is small, e.g., N ≤ 5000, appearing slightly smaller than those under LRU, as they both set some rule equally for each content
to stay in cache, instead of preference for more popular ones. When the cache becomes larger, FIFO performs better than
RR, as FIFO allows any content to stay in the cache for a same amount of time once getting cached, which is less influenced
by the arrival rates of different contents. RR, on the other side, even shows the highest standard deviation for Dataset B
when N = 20 000. Although WFC always has the lowest value of all when the cache size N is relatively smaller, for Dataset
A, it is overtaken by other policies such as FIFO when N increases, e.g., N > 17 000. For Dataset B, WFC always shows the
smallest value, but the difference betweenWFC and FIFO also shrinks when the cache is large. Not to mention that in reality,
cache size N usually does not exceed 1/10 of the content size M which is 177621 for Dataset A and 60506 for Dataset B,
considering the expensive price of cache, but we can also understand the occupancy rates from another perspective. Instead
of focusing solely on a single value for each execution of the cache simulation, we also plot groups of individual occupancy
rates in Appendix B. We observe from Figs. B.11 and B.12 that WFC is the only one of the compared policies that attempts to
achieve fairness, even when the standard deviation of occupancy rates is not as low as that of other policies.

Finally, we also plot the average hit rates of contents under the four caching policies in Fig. 8. Similar to our observation
from Fig. 4, the average hit rates under all caching policies do notmatch the theoretical value under the IRM assumption that
equals the average occupancy rate N/M . It is no surprise that LRU performs the best in terms of average hit rate, as it aims
to generate more cache hits. FIFO performs slightly worse than LRU, especially under a larger cache size. Our WFC policy, on
the other side, sacrifices a bit in hit rate, in order to achieve fairness in terms of occupancy rate which is more concentrated
on. Nonetheless, WFC usually shows no more than 0.05 in difference compared to the average hit rate under LRU, and even
outperforms LRU slightly for Dataset B when N = 1000, but it is the only policy that brings fairness into the allocation of
cache.

L. Shi et al. / Performance Evaluation 127–128 (2018) 194–211 205

Fig. 9. Average occupancy rate of contents belonging to 2 classes when v̂2/v̂1 ratio is varying for cache size N = 1000 and 20 000.

Fig. 10. Average hit rate of contents belonging to 2 classes when v̂2/v̂1 ratio is varying for cache size N = 1000 and 20 000.

5.3. Evaluation of class-based resource allocation

After evaluating the fairness property ofWFC,we evaluate the use ofWFC for class-based service differentiation. Based on
Theorem 7, we can set a normalized weight v̂j for each class j and adjust the ratio v̂2/v̂1 to influence the class-based resource
allocation ô1 and ô2.

We vary the ratio v̂2/v̂1 along x-axis and plot the average occupancy rates of the two classes of videos, i.e., ō1 for news
clips and ō2 for movies, in Fig. 9. We observe that the average occupancy rates show similar trends as ô1 and ô2 observed
from Fig. 2: (1) when v̂2/v̂1 increases, ô2 drops while ô1 increases, and (2) both ô1 and ô2 increase with the cache size N ,
which matches our intuition and previous analysis. Unlike the theoretical result from Theorem 7 that the fair allocation is
achieved at v̂2/v̂1 = 1 and ô1 = ô2 = N/M , we observe that the fair allocation is achieved when v̂2/v̂1 is around 3, due to
the discrepancies between actual arrival process of the requests and the IRM assumption.

In addition, we plot the corresponding average hit rates in Fig. 10. Similar trends can be observed for the average hit
rates, although the curves are not that smooth compared to those of the occupancy rates in Fig. 9. We believe that the
average hit rates fluctuate possibly due to the randomness brought by the probabilistic replacement decisions, while the
average occupancy rates aremore strongly correlated with the ratio v̂2/v̂1, and are always constrained byM1ô1 +M2ô2 = N .
Moreover, the average hit rates also differ from the occupancy rates.When the cache size is set to be a larger value, i.e., 20 000,
the average hit rates even become smaller than the average occupancy rates, and the point where ĥ2 = ĥ1 seems to be
somewhere v̂2/v̂1 > 10.

6. Conclusion

We have proposed WFC, a capacity-driven caching policy that allows tunable resource allocation through weights
assigned to contents. WFC provides an occupancy-centric framework that allows cache owners to make flexible resource
allocations decision to achieve various objectives. We derivedmultiple properties ofWFC as well as closed-form results, and
showed that fairness and class-based differentiation could be achieved under WFC via trace-driven evaluation, where the
IRM assumption does not hold. Meanwhile, WFC is able to trade off an acceptable amount of performance, in terms of hit
rate, to realize fairness.

206 L. Shi et al. / Performance Evaluation 127–128 (2018) 194–211

Appendix A. Proof of theorems

A.1. Proof of Theorem 1

Proof. Each element αs of αi represents the probability that when i gets cached, state of the CTMC transits from any r ∈ Sc
i

to s ∈ Si. The probability that the previous state is any one of such r is πr/
∑

r ′∈Sc
i
π ′
r and the probability of state transition

from r to s is Pr\s(r, i) if s \ r = i. Therefore, αs is the aggregate probability that state transition occurs from any state in Sc
i

to s, that is,

αs =

∑
r∈Sc

i
πrPr\s(r, i)∑

r ′∈Sc
i
πr ′

, ∀s ∈ Si.

Assume sj ∈ Si, j = 1, . . . , k and sj ∈ Sc
i , j = k + 1, . . . , l. Denote πSi = (πs1 , . . . , πsk),πSc

i
= (πsk+1 , . . . , πsl). Assume Q

is also sorted in the same manner and denote sub-matrices Qi = Q [1, . . . , k; 1, . . . , k], Ri = Q [k + 1, . . . , l; 1, . . . , k]. Qi is
the transition rate matrix between states in Si that is applied to calculate the absorbing time of phase-type distribution. Ri
represents the transition rates from some r ∈ Sc

i to some s ∈ Si. Since πQ = 0, we have πSiQi + πSci
Ri = 0. Thus,

(. . . , πs, . . .)s∈Si I = −(. . . , πr , . . .)r∈Sc
i
Ri(Qi)−1

= −(. . . ,
∑
r∈Sc

i

πrqr,s, . . .)s∈Si (Qi)−1.

Therefore,∑
s∈Si

πs = −(. . . ,
∑
r∈Sc

i

πrqr,s, . . .)s∈Si (Qi)−11 = −λi
∑
r∈Sc

i

πrαi(Qi)−11.

Consequently, E[Ti] = −αi(Qi)−11 =
1
λi

∑
s∈Si

πs∑
r∈Sc

i
πr
. □

A.2. Proof of Theorem 2

Proof. From renewal theory [24], if we consider time epochs when content i gets cached, then these time epochs happen
to be the regeneration times of a regenerative process. Hence, they constitute the event times of a renewal process, and we
can focus only on a single renewal cycle within two successive renewal epochs to study the behavior of the entire process.
Denote H as the number of cache hits within such a renewal cycle. Obviously there is only one cache miss within each cycle,
thus the average hit rate can be written as hi = E[H]/(E[H]+1) [25]. Moreover, E[Ti] is just the average duration that i could
stay in cache during each cycle. FromWald’s Equation, we can derive that E[H] = λiE[Ti]. Finally, there is

hi =
λiE[Ti]

λiE[Ti] + 1
=

∑
s∈Si

πs∑
s∈Si

πs +
∑

r∈Sc
i
πr

=

∑
s∈Si

πs = oi. □ (A.1)

A.3. Proof of Theorem 3

Proof. Obviously there are πRR1 = 1 and πFC1 = 1. Without loss of generality, we only show that ∀r ∈ S , the
corresponding column of Q , qr = (. . . , qs,r , . . .) satisfies πqr =

∑
s∈S πsqs,r = 0, which leads to πQ = 0. Denote

N (r) = {s : s ∈ S, |s ∩ r| = N − 1}, and suppose s \ r = {i}, r \ s = {j}. Since each row of the transition rate matrix
Q of a CTMC satisfies

∑
s∈S qs,r = 0, qs,s can be derived from the previous definition of Q . Thus,∑

s∈S

πRR
s qRRs,r =

1
Σ

(∑
s∈N (r)

Wsφsqs,r + Wrφrqr,r

)
=

1
Σ

(∑
s∈N (r)

Wsφs
wi

Ws
λj + Wrφr

(
−

∑
k∈rc

λk

))
=

1
Σ

(∑
s∈N (r)

φrwjλi − Wrφr

∑
k∈rc

λk

)
,

whereΣ =
∑

s∈S Wsφs. For any r , |N (r)| = N(M − N), as for each j ∈ r , there can be N − M possible corresponding i from
rc . Hence,

∑
s∈N (r) φrwjλi = φr

∑
j∈r wj

∑
i∈rc λi = φrWr

∑
i∈rc λi, which illustrates that

∑
s∈S π

RR
s qRRs,r = 0. Similarly,

L. Shi et al. / Performance Evaluation 127–128 (2018) 194–211 207∑
s∈S

π FC
s qFCs,r =

1
Σ

(∑
s∈N (r)

φsqs,r + φrqr,r

)
=

1
Σ

(∑
s∈N (r)

φs
wi

Ws + wj
λj + φrWr

(
−

∑
k∈rc

λk

Wr + wk

))
=

1
Σ

(∑
j∈r

φrwj

∑
i∈rc

λi

Wr + wi
− φrWr

∑
k∈rc

λk

Wr + wk

)
,

whereΣ =
∑

s∈S φs. SinceWr =
∑

j∈r wj, we have also shown that
∑

s∈S π
FC
s qFCs,r = 0.

For a CTMC, there exists a corresponding discrete-time Markov chain called its Embedded Markov Chain (EMC). Each
element of its one-step transition probability matrix P represents the conditional probability of transition between states
of the CTMC. P can be derived from P = I − (diag(Q))−1Q , where I is the identity matrix and diag(Q) is the diagonal
matrix formed by selecting the main diagonal from Q and setting all other elements to 0. Thus, ps,s′ = qs,s′/(−qs,s) if s ̸= s′;
otherwise it is 0. The stationary probability distribution vector of the EMC, ν, satisfies that νP = ν and ν1 = 1. Moreover,
π can be represented as π = −ν(diag(Q))−1/∥ − ν(diag(Q))−1

∥1, that is, πs is proportional to νs(−1/qs,s). From [26], if we
consider the sequence of time epochs when the state transitions occur, i.e., 0 = T0 < T1 < · · · < Tn < · · · , we then get a
semi-Markov process (SMP) defined as Y = {Yt := Xn for Tn ≤ t ≤ Tn+1}. Xn denotes the state of the EMC after the nth state
transition, while X0 is the initial state. Define ms := E[T1|X0 = s], according to the IRM assumption, the aggregate request
arrival process is a Poisson process at rate −qs,s. Thus, ms = 1/(−qs,s), and the asymptotic probability that the SMP is in
state s can be derived from ψs := limt→∞ Pr{Yt = s} = νsms/

∑
r∈S νrmr =

(
νs(−1/qs,s)

)
/
(
νr (−1/qr,r)

)
, which describes

the proportion of time that the process is in state s when the total time t is long enough. Thus, the proportion of time that
content i is in cache in the long run could be written as

∑
s∈Si

ψs, which is defined as the occupancy rate oi. Consequently,
we have

oi =

∑
s∈Si

νs(−1/qs,s)∑
r∈S νr (−1/qr,r)

=

∑
s∈Si

πs∑
r∈S πr

=

∑
s∈Si

πs. □

A.4. Proof of Theorem 4

Proof. From Theorem 3,

oi =

∑
s∈Si

φs∑
r∈S φr

=

∑
s∈Si

φs∑
s∈Si

φs +
∑

r∈Sc
i
φr
,

where φs = (
∏

j∈s λj)(
∏

k∈sc wk). Therefore, we can denote f−i =
∑

s∈Si
φs and g−i =

1
wi

∑
r∈Sc

i
φr , such that f−i and g−i are

irrelevant with wi. As result,

oi =
f−i

f−i + wig−i
,

∂oi
∂wi

=
−f−ig−i

(f−i + wig−i)2
,

where λi > 0, wi > 0, ∀i ∈ M. We assume here that wi is always strictly positive; otherwise, wi = 0 indicates that i is
always cached and oi is 1, then the (M,N) case is actually reduced to (M − 1,N − 1). Consequently, ∂oi/∂wi < 0.

Similarly, given any j ̸= i, we could further define that f−i = h−j +wjl−j and g−i = h̃−j +wj l̃−j, such that h−j, l−j, h̃−j and
l̃−j are all irrelevant with j. That is to say,

h−j =

∑
s∈Si∩Sj

φs, l−j =
1
wj

∑
s∈Si\Sj

φs, h̃−j =

∑
s∈Sc

i ∩Sj

φs, l̃−j =
1
wj

∑
s∈Sc

i \Sj

φs.

and

∂oi
∂wj

=
h̃−jl−j − h−j l̃−j

(h−j + wjl−j + h̃−j + wj l̃−j)2
.

By definition, Sc
i ∩ Sj covers all states including j but excluding i, i.e., s = {j} ∪ s1, where s1 ⊂ M \ {i, j}, |s1| = N − 1; Si \ Sj

covers all states including i but excluding j, i.e., s = {i} ∪ s2, where s2 ⊂ M \ {i, j}, |s2| = N − 1; Si ∩ Sj covers all states
including both i and j, i.e., s = {i, j} ∪ s3, where s3 ⊂ M \ {i, j}, |s3| = N − 2; and Sc

i \ Sj covers all states excluding both i
and j, i.e., s = s4, where s4 ⊂ M \ {i, j}, |s4| = N . Hence, h̃−j · wjl−j consists of φsφr from

(M−2
N−1

)(M−2
N−1

)
pairs of (s, r), where

s ∈ Sc
i ∩ Sj, r ∈ Si \ Sj; while h−j · wj l̃−j consists of φs′φr ′ from

(M−2
N−2

)(M−2
N

)
pairs of (s′, r ′), where s′ ∈ Si ∩ Sj, r ′

∈ Sc
i \ Sj.

It can be noticed that
(M−2
N−1

)(M−2
N−1

)
>

(M−2
N−2

)(M−2
N

)
. Moreover, given any s′ ∈ Si ∩ Sj, r ′

∈ Sc
i \ Sj, suppose |s′ ∪ r ′

| = n, then
N + 2 ≤ n ≤ 2N . Thus, there exist

(n−2
N−2

)(n−2
N

)
pairs of (s, r) that s, r ⊂ (s′ ∪ r ′) and s ∈ Si ∩ Sj, r ∈ Sc

i \ Sj, such that given
any (s, r), φsφr = φs′φr ′ . Meanwhile, there also exist

(n−2
N−1

)(n−2
N−1

)
pairs of (s, r) that s, r ∈ (s′ ∪ r ′) and s ∈ Si \ Sj, r ∈ Sc

i ∩ Sj,

208 L. Shi et al. / Performance Evaluation 127–128 (2018) 194–211

such that given any (s, r), φsφr = φs′φr ′ . Similarly, we can notice that
(n−2
N−1

)(n−2
N−1

)
>

(n−2
N−2

)(n−2
N

)
. Consequently, we can infer

that h−j ·wjl−j consists of more terms in the form of φsφr , while also completely covers the entire form of h−j ·wj l̃−j, that is,
h̃−j · wjl−j − h−j · wj l̃−j > 0, which indicates that ∂oi/∂wj > 0. □

A.5. Proof of Theorem 5

Proof. Since the average arrival rate λi can always be considered as strictly positive, if we divide each φs by
∏

i∈M λi, oi can
thus be represented as

oi =

∑
s∈Si

∏
j∈sc (wj/λj)∑

r∈S
∏

k∈rc (wk/λk)
.

Therefore, if the ratio wi/λi is kept constant, i.e.,
wi

λi
=
w′

i

λ′

i
, w′

i =
λ′

i

λi
wi, ∀i ∈ M,

then oi can remain the same. This indicates we can define the normalizedweight vi = wi/λi to decouple the impact of arrival
rate on the resulting occupancy rates. □

A.6. Proof of Theorem 6

Proof. From Theorem 3, if all the weights are strictly positive, i.e., wi > 0, ∀i ∈ M, φs is defined as
∏

i∈s λi/wi, thus,

oi =

∑
s∈Si

ϕs∑
r∈S ϕr

=

∑
s∈Si

∏
j∈s v

−1
j∑

r∈S
∏

k∈r v
−1
k

=

∑
s∈Si

∏
j∈sc vj∑

r∈S
∏

k∈rc vk
.

Hence, it can be noticed by definition that we can denote

f−i =

∑
s∈Si

∏
j∈rc

vj =

∏
k∈M

vk
∑
s∈Si

∏
j∈s

v−1
j ,

and

g−i =
1
vi

∑
r∈Sc

i

∏
j∈rc

vj =
1
vi

∏
k∈M

vk
∑
r∈Sc

i

∏
j∈r

v−1
j ,

such that f−i and g−i are irrelevant with i. Therefore,

oi =
f−i

f−i + vig−i
, vi =

1 − oi
oi

f−i

g−i
.

Now we denote v̄−i = f−i/g−i, then vi = v̄−1(1 − oi)/oi, which leads to oi = v̄−i/(v̄−i + vi). □

A.7. Proof of Theorem 7

Proof. From Theorems 3 and 6, oi can be written as

oi =

∑
s∈Si

∏
j∈s v

−1
j∑

r∈S
∏

k∈r v
−1
k

.

Since each content from class l is now assigned the normalized weight of class, i.e., v̂l, any state s can now be interpreted as
a corresponding allocation of the cache resource to each class, i.e., n = (n1, . . . , nM). Hence,

∏
j∈s v

−1
j turns into

∏K
l=1(v̂

nl
l)−1

under class-based resource allocation, and all possible states of the cache correspond to all possible ways of allocation
described by n. Given a resource allocation n = (n1, . . . , nM) that allocates nl amount of cache resource to class l, there
are

∏K
l=1

(Ml
nl

)
corresponding states since any nl from theMl content items in class l can be allocated the resource, while such

possible allocation n is defined on the space constrained by
∑K

l=1 nl = N and 0 ≤ nl ≤ Ml, ∀l = 1, . . . , K . As result,

O :=

∑
r∈S

∏
k∈r

v−1
k =

∑
n∈N

K∏
l=1

(
Ml

nl

) K∏
l=1

(v̂nll)−1.

Similarly, if content i is in class k, then all possible states in Si correspond to all possible ways of allocation that grant nl
amount of cache resource to any other class l, and nk − 1 available cache resource to the remainingMk − 1 content items in
class k. That is to say,

Ok :=

∑
s∈Si

∏
j∈s

v−1
j =

∑
n∈Ni

(Mk−1
nk−1

)(Mk
nk

) K∏
l=1

(
Ml

nl

) K∏
l=1

(v̂nll)−1
=

∑
n∈Ni

nk

Mk

K∏
l=1

(
Ml

nl

) K∏
l=1

(v̂nll)−1,

L. Shi et al. / Performance Evaluation 127–128 (2018) 194–211 209

Fig. B.11. Occupancy rates of (1) the most popular 50 videos, (2) 50 videos around the video where accumulated popularity accounts for half of the total
popularity and (3) the least popular 50 videos from Dataset A.

while now the possible allocation n is defined on the space constrained by
∑K

l=1 nl = N and 0 ≤ nk − 1 ≤ Mk − 1, 0 ≤ nl ≤

Ml, ∀l = 1, . . . , K , l ̸= k. □

Appendix B. Additional experimental validation

Instead of focusing on the average value or standard deviation which converges all the values into one, we plot individual
occupancy rates to inspect their distribution in Fig. B.11, as they also reflect the fairness of the caching policy. We notice that
for Dataset A, the most popular 3735 videos account for 50% of the total popularity. Hence, we show the occupancy rates of
(1) the most popular 50 videos (rank 1 to 50), (2) 50 videos around the 3735th most popular video (rank 3710 to 3759), (3)

210 L. Shi et al. / Performance Evaluation 127–128 (2018) 194–211

Fig. B.12. Occupancy rates of (1) the most popular 50 videos, (2) 50 videos around the video where accumulated popularity accounts for half of the total
popularity and (3) the least popular 50 videos from Dataset B.

the least popular 50 videos (rank 177572 to 177621) to check the occupancy rates of videos with different popularity. The
solid horizontal line represents the average occupancy rate N/M , and theoretically all the points fall on it if IRM assumption
is satisfied. We observe that in Fig. B.11(a), although WFC does not show standard deviation as low as other policies such
as FIFO when N = 20 000, only WFC attempts to bring all the occupancy rates around N/M that represents a fair allocation
of cache, while other policies do not take this into account, especially for those popular videos that can gain occupancy
rates close to 1. However, we also notice that for less popular contents, WFC sometimes causes a rather huge fluctuation in
occupancy rates, probably because the effect of the randomness in cache replacement can be amplified when the request
arrivals are infrequent, so some unpopular videos can stay longer than expected in the cache due to their low weights. This
observation explains the slightly higher standard deviation of occupancy rates.

Compared to Fig. B.11(b) where N = 5000, we notice that WFC performs better in terms of fairness when the cache size
is smaller, as the plot points become closer to N/M . When the cache size is smaller, a content tends to stay for a shorter
period of time in the cache before it get replaced by another content, or to say cache replacements occur more often, thus
the randomness brought by the probabilistic cache replacement has less influence on the distribution of the occupancy
rates. Compared to Fig. B.11(c) where we use WFCdet, we understand that WFCdet performs better given same cache size
N = 20 000, as it has a global view on the popularity of contents, not only partially estimated from a sliding window. For
Dataset B, the 96 most popular videos account for 50% of the popularity. Comparing 3735/177 621 with 96/60 506, we can
also understand the difference between the popularity distribution of Dataset A and Dataset B. We observe similar results
in Fig. B.12, that only WFC attempts to achieve fairness by bringing occupancy rates around N/M regardless of the content
popularity, and it performs better under a smaller cache size.

Since Datasets A and B both lack information on the complete size of each video, we assume that each cache slot is able
to accommodate a video content in our cache simulation. However, Dataset A provides information on how large each time
a video is partially loaded upon a request in one field per record, thus we may revise WFC to see if partitioning videos into
equal-sized chunks influences the results. We divide each video into chunks of size 106, and treat each chunk as a separate
video. Hence, 177621 videos correspond to 703001 chunks, and we also scale the cache size such that N/M remains the
same as when N = 20 000 in the previous simulation. The 11850 most popular chunks take 50% of the total popularity.
We observe that in Fig. B.11(d), WFCdet still attempts to bring down the occupancy rates of the popular videos compared to
other policies, however the effect is not that good compared to Fig. B.11(c). We believe this is because such partial video size
information still cannot reveal the actual size of videos, as new request may demand an uncached chunk of the video which
causes the discrepancies in occupancy rates.

References

[1] A.K. Parekh, R.G. Gallager, Ageneralized processor sharing approach to flow control in integrated services networks: the single-node case, IEEE/ACM
Trans. Netw. 1 (3) (1993) 344–357.

http://refhub.elsevier.com/S0166-5316(18)30261-X/sb1
http://refhub.elsevier.com/S0166-5316(18)30261-X/sb1
http://refhub.elsevier.com/S0166-5316(18)30261-X/sb1

L. Shi et al. / Performance Evaluation 127–128 (2018) 194–211 211

[2] A. Demers, S. Keshav, S. Shenker, Analysis and simulation of a fair queueing algorithm, in: ACM SIGCOMM Computer Communication Review, vol. 19,
(4) ACM, 1989, pp. 1–12.

[3] E.G. Coffman, P.J. Denning, Operating Systems Theory, vol. 973, Prentice-Hall Englewood Cliffs, NJ, 1973.
[4] M.N. Garofalakis, Y.E. Ioannidis, Parallel query scheduling and optimization with time-and space-shared resources, SORT 1 (T2) (1997) T3.
[5] J.C. Bennett, H. Zhang, WF2Q: worst-case fair weighted fair queueing, in: INFOCOM’96. Fifteenth Annual Joint Conference of the IEEE Computer

Societies. Networking the Next Generation. Proceedings IEEE ,vol. 1, IEEE, 1996, pp. 120–128.
[6] P. Goyal, H.M. Vin, H. Chen, Start-time fair queueing: a scheduling algorithm for integrated services packet switching networks, in: ACM SIGCOMM

Computer Communication Review, vol. 26, (4) ACM, 1996, pp. 157–168.
[7] I. Stoica, H. Abdel-Wahab, K. Jeffay, S.K. Baruah, J.E. Gehrke, C.G. Plaxton, A proportional share resource allocation algorithm for real-time, time-shared

systems, in: Real-Time Systems Symposium, 1996., 17th IEEE, IEEE, 1996, pp. 288–299.
[8] C.A. Waldspurger, W.E. Weihl, Lottery scheduling: flexible proportional-share resource management, in: Proceedings of the 1st USENIX conference

on Operating Systems Design and Implementation, USENIX Association, 1994, p. 1.
[9] C.A. Waldspurger, W.E. Weihl, Stride Scheduling: Deterministic Proportional Share Resource Management, Massachusetts Institute of Technology.

Laboratory for Computer Science, 1995.
[10] A. Dan, D. Towsley, An Approximate Analysis of the LRU and FIFO Buffer Replacement Schemes, vol. 18, (1) ACM, 1990.
[11] E. Gelenbe, A unified approach to the evaluation of a class of replacement algorithms, IEEE Trans. Comput. 100 (6) (1973) 611–618.
[12] H. Che, Y. Tung, Z. Wang, Hierarchical web caching systems: modeling, design and experimental results, IEEE J. Sel. Areas Commun. 20 (7) (2002)

1305–1314.
[13] M. Dehghan, L. Massoulie, D. Towsley, D. Menasche, Y. Tay, A utility optimization approach to network cache design, in: Computer Communications,

IEEE INFOCOM 2016-The 35th Annual IEEE International Conference on, IEEE, 2016, pp. 1–9.
[14] N.C. Fofack, P. Nain, G. Neglia, D. Towsley, Performance evaluation of hierarchical ttl-based cache networks, Comput. Netw. 65 (2014) 212–231.
[15] D.S. Berger, P. Gland, S. Singla, F. Ciucu, Exact analysis of ttl cache networks, Perform. Eval. 79 (2014) 2–23.
[16] R.T.B.Ma, D. Towsley, Cashing in on caching: on-demand contract designwith linear pricing, in: Proceedings of the 11th ACMConference on Emerging

Networking Experiments and Technologies, 2015.
[17] A. Ferragut, I. Rodríguez, F. Paganini, Optimizing ttl caches under heavy-tailed demands, in: Proceedings of the 2016 ACM SIGMETRICS International

Conference on Measurement and Modeling of Computer Science, ACM, 2016, pp. 101–112.
[18] E. Quinones, E.D. Berger, G. Bernat, F.J. Cazorla, Using randomized caches in probabilistic real-time systems, in: Real-Time Systems, 2009. ECRTS’09.

21st Euromicro Conference on, IEEE, 2009, pp. 129–138.
[19] K. Psounis, B. Prabhakar, A randomizedweb-cache replacement scheme, in: INFOCOM 2001. Twentieth Annual Joint Conference of the IEEE Computer

and Communications Societies. Proceedings. IEEE, vol. 3, IEEE, 2001, pp. 1407–1415.
[20] L. Wang, G. Tyson, J. Kangasharju, J. Crowcroft, FairCache: introducing fairness to icn caching, in: Network Protocols (ICNP), 2016 IEEE 24th

International Conference on, IEEE, 2016, pp. 1–10.
[21] Q. Pu, H. Li, M. Zaharia, A. Ghodsi, I. Stoica, Fairride: near-optimal, fair cache sharing, in: 13th USENIX Symposium on Networked Systems Design and

Implementation (NSDI 16), USENIX Association, 2016, pp. 393–406.
[22] E. Hargreaves, C. Agosti, D. Menasché, G. Neglia, A. Reiffers-Masson, E. Altman, Fairness in online social network timelines: measurements, models

and mechanism design, in: IFIP Performance 2018, 2018.
[23] P. Buchholz, J. Kriege, I. Felko, Input Modeling with Phase-type Distributions and Markov Models: Theory and Applications, Springer, 2014.
[24] S.M. Ross, Stochastic Processes. 1996, Wiley, New York, 1996.
[25] J. Jung, A.W. Berger, H. Balakrishnan, Modeling ttl-based Internet caches, in: INFOCOM 2003. Twenty-Second Annual Joint Conference of the IEEE

Computer and Communications. IEEE Societies, vol. 1, IEEE, 2003, pp. 417–426.
[26] J. Janssen, R. Manca, Applied Semi-Markov Processes, Springer Science & Business Media, 2006.

http://refhub.elsevier.com/S0166-5316(18)30261-X/sb2
http://refhub.elsevier.com/S0166-5316(18)30261-X/sb2
http://refhub.elsevier.com/S0166-5316(18)30261-X/sb2
http://refhub.elsevier.com/S0166-5316(18)30261-X/sb3
http://refhub.elsevier.com/S0166-5316(18)30261-X/sb4
http://refhub.elsevier.com/S0166-5316(18)30261-X/sb5
http://refhub.elsevier.com/S0166-5316(18)30261-X/sb5
http://refhub.elsevier.com/S0166-5316(18)30261-X/sb5
http://refhub.elsevier.com/S0166-5316(18)30261-X/sb6
http://refhub.elsevier.com/S0166-5316(18)30261-X/sb6
http://refhub.elsevier.com/S0166-5316(18)30261-X/sb6
http://refhub.elsevier.com/S0166-5316(18)30261-X/sb7
http://refhub.elsevier.com/S0166-5316(18)30261-X/sb7
http://refhub.elsevier.com/S0166-5316(18)30261-X/sb7
http://refhub.elsevier.com/S0166-5316(18)30261-X/sb8
http://refhub.elsevier.com/S0166-5316(18)30261-X/sb8
http://refhub.elsevier.com/S0166-5316(18)30261-X/sb8
http://refhub.elsevier.com/S0166-5316(18)30261-X/sb9
http://refhub.elsevier.com/S0166-5316(18)30261-X/sb9
http://refhub.elsevier.com/S0166-5316(18)30261-X/sb9
http://refhub.elsevier.com/S0166-5316(18)30261-X/sb10
http://refhub.elsevier.com/S0166-5316(18)30261-X/sb11
http://refhub.elsevier.com/S0166-5316(18)30261-X/sb12
http://refhub.elsevier.com/S0166-5316(18)30261-X/sb12
http://refhub.elsevier.com/S0166-5316(18)30261-X/sb12
http://refhub.elsevier.com/S0166-5316(18)30261-X/sb13
http://refhub.elsevier.com/S0166-5316(18)30261-X/sb13
http://refhub.elsevier.com/S0166-5316(18)30261-X/sb13
http://refhub.elsevier.com/S0166-5316(18)30261-X/sb14
http://refhub.elsevier.com/S0166-5316(18)30261-X/sb15
http://refhub.elsevier.com/S0166-5316(18)30261-X/sb17
http://refhub.elsevier.com/S0166-5316(18)30261-X/sb17
http://refhub.elsevier.com/S0166-5316(18)30261-X/sb17
http://refhub.elsevier.com/S0166-5316(18)30261-X/sb18
http://refhub.elsevier.com/S0166-5316(18)30261-X/sb18
http://refhub.elsevier.com/S0166-5316(18)30261-X/sb18
http://refhub.elsevier.com/S0166-5316(18)30261-X/sb19
http://refhub.elsevier.com/S0166-5316(18)30261-X/sb19
http://refhub.elsevier.com/S0166-5316(18)30261-X/sb19
http://refhub.elsevier.com/S0166-5316(18)30261-X/sb20
http://refhub.elsevier.com/S0166-5316(18)30261-X/sb20
http://refhub.elsevier.com/S0166-5316(18)30261-X/sb20
http://refhub.elsevier.com/S0166-5316(18)30261-X/sb21
http://refhub.elsevier.com/S0166-5316(18)30261-X/sb21
http://refhub.elsevier.com/S0166-5316(18)30261-X/sb21
http://refhub.elsevier.com/S0166-5316(18)30261-X/sb22
http://refhub.elsevier.com/S0166-5316(18)30261-X/sb22
http://refhub.elsevier.com/S0166-5316(18)30261-X/sb22
http://refhub.elsevier.com/S0166-5316(18)30261-X/sb23
http://refhub.elsevier.com/S0166-5316(18)30261-X/sb24
http://refhub.elsevier.com/S0166-5316(18)30261-X/sb25
http://refhub.elsevier.com/S0166-5316(18)30261-X/sb25
http://refhub.elsevier.com/S0166-5316(18)30261-X/sb25
http://refhub.elsevier.com/S0166-5316(18)30261-X/sb26

	Weighted fair caching: Occupancy-centric allocation for space-shared resources
	Introduction
	Related Work
	Indivisible time-shared resources
	Divisible space-shared resources

	Weighted Fair Caching Mechanism
	Probabilistic Markovian Caching Policies
	Weighted Caching Policies

	Resource Allocation under WFC
	Trace-Driven Evaluation
	Dataset
	Evaluation of Fairness
	Evaluation of Class-based Resource Allocation

	Conclusion
	Appendix A Proof of Theorems
	Proof of Thm:ETi
	Proof of Thm:HR
	Proof of Thm:OR
	Proof of Thm:monotonicity
	Proof of Thm:scaling
	Proof of Thm:wi
	Proof of Thm:Class

	Appendix B Additional Experimental Validation
	References

