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ABSTRACT
Elasticity is highly desirable for stream systems to guarantee
low latency against workload dynamics, such as surges in
arrival rate and fluctuations in data distribution. Existing sys-
tems achieve elasticity using a resource-centric approach that
repartitions keys across the parallel instances, i.e. executors,
to balance the workload and scale operators. However, such
operator-level repartitioning requires global synchronization
and prohibits rapid elasticity. We propose an executor-centric
approach that avoids operator-level key repartitioning and
implements executors as the building blocks of elasticity.
By this new approach, we design the Elasticutor framework
with two level of optimizations: i) a novel implementation
of executors, i.e., elastic executors, that perform elastic multi-
core execution via efficient intra-executor load balancing
and executor scaling and ii) a global model-based scheduler
that dynamically allocates CPU cores to executors based
on the instantaneous workloads. We implemented a proto-
type of Elasticutor and conducted extensive experiments. We
show that Elasticutor doubles the throughput and achieves
up to two orders of magnitude lower latency than previous
methods for dynamic workloads of real-world applications.
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1 INTRODUCTION
Distributed stream systems [8, 12, 40, 43, 45, 50, 51] enable
real-time data processing over continuous streams, and have
been widely used in applications including fraud detection,
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Figure 1: Comparison of elasticity mechanisms:
resource-centric (left) vs. executor-centric (right).

surveillance analytics and quantitative finance. In such sys-
tems, the application logic is modeled as a graph of compu-
tation, where each vertex represents an operator associated
with user-defined processing logic and each edge specifies
the input-output relationship of data streams between the
operators. To enable large-scale data processing, the input
stream to an operator is often defined under a key space
that can be partitioned into subspaces. Parallel execution
instances, i.e. executors, are created to statically bind each
key subspace to an amount of computational resource, typ-
ically a CPU core. As a result, each executor can conduct
computation associated with its key subspace independently.
However, in real applications such as stock trading and

video analytics, the workload fluctuates greatly with time,
leading to severe performance degradation [15, 39]. From a
temporal perspective, the aggregate workload fed to an op-
erator might surge significantly in a short period of time, e.g,
10 seconds, making the operator a bottleneck for the entire
processing pipeline. From a spatial perspective, the workload
distribution over key space might be unstable, resulting in a
skewed workload across the executors with low CPU utiliza-
tion in some and overload in the others. To adapt to workload
fluctuation, prior work [14, 15, 39, 41] proposed solutions
to enable elasticity, i.e., operator scaling and load balancing.
All these solutions are resource-centric, in that executors are
bound to particular resources and elasticity is achieved by
dynamically repartitioning keys across executors.

Figure 1(a) illustrates a scenario where an executor is over-
loaded due to imbalance in workload distribution. To relieve
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the performance bottleneck, the key space is repartitioned
such that a certain amount of workload along with the cor-
responding keys in the overloaded executor is migrated to
a lighter-loaded executor. However, this process requires a
time-consuming protocol [15, 39] to maintain state consis-
tency. In particular, the system needs to perform the follow-
ing operations: (a) stop upstream executors from sending
tuples downstream; (b) wait for all in-flight tuples to be pro-
cessed; (c) migrate the state among executors according to
the new key space partitioning; (d) update the routing tables
of the upstream executors; and finally (e) resume upstream
executors sending tuples downstream. Because both inter-
operator routing update and inter-executor state migration
require expensive global synchronization, key space reparti-
tioning may last over seconds, during which new incoming
tuples cannot be processed and significant delays incur.

To achieve rapid elasticity, we propose an executor-centric
paradigm. The core idea is to statically partition the key space
of an operator among executors but dynamically assign CPU
cores to each executor based on its instantaneous workload.
Figure 1(b) illustrates that instead of repartitioning key space,
the new approach balances workload by reassigning CPU
cores from a lighter-loaded executor to the overloaded execu-
tor. As each executor possesses a fixed key subspace, the new
approach achieves inter-operator independence, i.e., upstream
operators do not need to synchronize with downstream ones,
and inter-executor independence, i.e., states associated with
key subspaces do not need to be migrated across executors.
In other words, this new approach gracefully decouples the
binding between operator-level key space repartitioning and
dynamic provisioning of computational resources.
Based on the executor-centric approach, we design the

Elasticutor framework with two levels of optimization. At
the executor level, implemented as a lightweight distributed
subsystem, each elastic executor evenly distributes its work-
load over its assigned CPU cores and scales rapidly when
the scheduler allocates/deallocates CPU cores to or from it.
At the global level, a model-based dynamic scheduler is de-
signed to optimize the core-to-executor assignment based on
the measured performance metrics in order to accommodate
the workload dynamics with minimum state migration over-
head and maximum locality of computation. We implement
a prototype of Elasticutor and conducted extensive exper-
iments using both synthetic and real datasets. The results
show that Elasticutor doubles the throughput and achieves
orders of magnitude lower latency than existing methods.

The rest of this paper is organized as follows. Section 2 in-
troduces the executor-centric paradigm and gives an overview
of the Elasticutor framework. Sections 3 and 4 present the
designs of elastic executors and the dynamic scheduler, re-
spectively. Section 5 discusses experimental results. Section 6
review the related work. Section 7 concludes the paper.

2 PARADIGM AND FRAMEWORK
2.1 Basic Concepts
We consider a real-time stateful stream processing system
on a cluster of machines, called nodes, connected by fast
network devices. A stream is an unbounded sequence of tu-
ples. Tuples from the input stream(s) continuously arrive
at the system and are immediately processed. A user ap-
plication is modeled as a directed graph of computation,
called a topology, where the vertices are the operators with
user-defined processing logic and the edges represent the
sequence of processing among the operators. For each pair
of adjacent operators, tuples of a stream are generated by
the upstream operator and consumed by the downstream
operator. In stateful computation, an operator maintains an
internal state, which is used for computation and will be
updated during the processing of input tuples. To distribute
and parallelize the computation, the state of an operator is
implemented as a divisible data structure defined on a key
space. The system partitions the key space into subspaces and
creates a parallel instance, called an executor, with identical
data processing logic for each of them. To guarantee the con-
sistency of states maintained on such a distributed system,
tuples need to be correctly routed to downstream executors.
Because processing the same sequence of input tuples in
different orders may result in different output tuples and
states, another basic requirement in stateful computation is
to process the tuples of the same key in the order of arrival.

Stream processing workloads are often dynamic in that the
input rate to an operator and the key distribution of tuples
fluctuate over time. To guarantee the performance under a
dynamic workload, computational resources, i.e., CPU cores,
should be appropriately provisioned to the operators so as
to ensure 1) operator scaling, i.e., CPU cores are dynamically
allocated to operators according to their workloads; and 2)
load balancing, i.e., the workload of each operator is evenly
distributed across the allocated CPU cores. Without achiev-
ing the former, some operators may be overloaded or over-
provisioned, becoming a performance bottleneck or wasting
computational resources, respectively. Without achieving
the latter, some CPU cores will be overloaded while others
will be underutilized, resulting in poor performance. We
refer to the mechanism of operator scaling and load balanc-
ing as elasticity. To retain high performance under dynamic
workloads, rapid elasticity is a crucial requirement.

2.2 The Executor-Centric Paradigm
Table 1 summarizes the main features of the two existing
paradigms of elasticity: the static and the resource-centric ap-
proach. The static approach implements each operator with a
fixed number of executors and uses static operator-level key
partitioning to distribute the workload among the executors.



Table 1: Comparison of three execution paradigms.

paradigms operator-level
key partitioning

CPU-to-executor
assignment elasticity

static static one-to-one N/A
resource-centric dynamic one-to-one slow
executor-centric static many-to-one rapid

Each executor consists of a single data processing thread
bound to an assigned CPU core. Due to the static key parti-
tioning and one-to-one binding of CPU cores to executors,
the static approach simplifies system implementation and is
adopted in most state-of-the-art systems [30, 43]. However,
since it can neither balance the workload across the allocated
CPU cores nor adjust the number of CPU cores assigned to
a particular operator, this approach is very sensitive to the
partitioning schema and works inefficiently under a dynamic
workload due to the lack of elasticity.

The resource-centric approach resolves the limitation of
the static approach by supporting dynamic operator-level
key partitioning, while following the same implementation
of the executors as in the static approach. With the capability
of operator-level key repartitioning, the resource-centric
approach achieves elasticity, as it canmigrate some keys with
their corresponding workload from overloaded executors to
the lighter-loaded executors to balance the workload, or from
existing executors to a newly created executor to scale out an
operator. However, as discussed in the introduction section,
this operator-level key repartitioning is a time-consuming
procedure, during which expensive global synchronization
is required to migrate the state and to update the routing
tables of all the upstream executors. Therefore, the resource-
centric approach does not achieve rapid elasticity and can
only tackle a very limited degree of workload dynamics.
To achieve rapid elasticity, we propose a new execution

paradigm: the executor-centric approach. Our idea comes
from the observation that the operator-level key repartition-
ing is too expensive to achieve rapid elasticity. Consequently,
the executor-centric approach uses static operator-level key
partitioning but implements each executor as the building
block of elasticity to handle workload fluctuation. In partic-
ular, each executor is designed to utilize various amount of
computation resources by creating or removing data process-
ing threads on the fly. Therefore, to achieve load balancing
and operator scaling, the system can dynamically assign an
appropriate number of CPU cores to each elastic executor
rather than performing the expensive operator-level key
repartitioning. Compared with operator-level key reparti-
tioning, reassignment of CPU cores and intra-executor load
balancing can be achieved efficiently, since they do not need
any inter-operator or inter-executor synchronization. Fun-
damentally, our new approach achieves rapid elasticity by
avoiding global synchronization.
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Figure 2: Overview of the Elasticutor framework.

2.3 Overview of Elasticutor Framework
Following the executor-centric approach, we design Elasti-
cutor that focuses on supporting stateful stream processing.
To process large-scale data on stream systems, we assume
that data and states are defined under a key space, based on
which partitioned data streams and states can be processed
andmaintained in parallel by distributed computational units.
We assume that the key space is fine-grained enough so that
even skewed workload could potentially be distributed and
balanced on the increasing amount of computation resource,
i.e., CPU cores. For other state-of-the-art streaming systems
like Heron, Flink and Samza, this assumption is also needed
to enable highly parallelized stateful stream processing.
Our design goal is to enable real-time responses, which

boils down to guaranteeing low latency. However, excessive
delay could be due to insufficient system resources caused by
higher arrival rates of data, or inefficient resource allocation
and scheduling that induce workload imbalances. The former
requires resource scaling, while the latter does not. Based on
the principle of separation of concerns, we design Elasticutor
as a two-level architecture, as illustrated in Figure 2.

The high-level scheduler (described in Section 4) handles
dynamic workload that may surge in periods of time, during
which the existing system capacity is insufficient and needs
to scale. Overprovisioning is not needed, but we assume
that resources can be acquired on-demand from cloud-based
platforms. We assume that this overall surge in workload
doesn’t happen too frequently, e.g., at a time-scale of minutes
to hours. The dynamic scheduler determines the desirable
number of CPU cores each elastic executor should be pro-
visioned under the instantaneous workload. It employs a
performance model based on queuing networks and uses col-
lected performance metrics of the elastic executors as inputs
to generate resource allocation decisions. Based on the exist-
ing core-to-executor assignment and the availability of CPU
cores in the cluster, the scheduler refines the assignment to
accommodate the new resource allocation plan, while tak-
ing both the CPU reassignment overhead and the locality of
computational resources into consideration.



Each low-level executor (described in Section 3) is de-
signed as a lightweight, self-contained, distributed subsys-
tem, called an elastic executor, responsible for processing
inputs under a fixed key-subspace. To adapt to the work-
load fluctuations, an elastic executor can utilize a dynamic
number of CPU cores, possibly from multiple nodes, as deter-
mined by the dynamic scheduler. To fully utilize its allocated
CPU cores in presence of workload fluctuation, an elastic
executor has an efficient internal load balancing mechanism
that evenly distributes the computation of its input stream
across the allocated CPU cores in much shorter time-scales.

The design space of streaming systems that target stateful
processing also include dimensions such as the state size and
the characteristics of data streams, i.e., per-tuple computation
and size, and the skewness and dynamicity of data streams
under the key space.Wewill discuss the trade-offs Elasticutor
makes compared to alterantive methods in Section 5.

3 ELASTIC EXECUTOR
To efficiently utilize CPU resources, an elastic executor is
designed to adapt to two dynamics: 1) changes in key distribu-
tion and 2) CPU core reassignments, as illustrated in Figure 3.
The former results from fluctuations in the input stream,
while the latter is determined by the scheduler for global
optimization. To distribute the workload over its computa-
tional resources, an elastic executor creates a task for each
assigned CPU core and distributes input data tuples over
them. Upon a CPU reassignment, a new task will be created
or an existing task will be deleted. Both dynamics introduce
unbalanced workload among the tasks, leading to resource
underutilization or performance degradation. Therefore, a
central design question is how to keep balanced workload
distribution among tasks in presence of such dynamics.

3.1 Components and Working Mechanism
As illustrated in Figure 4, an elastic executor is implemented
as a lightweight, self-contained distributed subsystem that
can utilize computational resources on multiple physical
nodes. Each elastic executor primarily resides in one physical
node, called its local node, where it runs a local main process
to receive input tuples and send output tuples. For each
allocated CPU core, a task, implemented as a data processing
thread, is created in the process. To utilize CPU cores on a
remote node, a remote process can be created to host remote
tasks for remote data processing.
Intra-Executor Routing: We employ a two-tier design,
implemented in the routing table shown in the central rec-
tangle in Figure 4, to dynamically map input tuples to the
tasks based on the instantaneous workload distribution. The
first tier statically partitions the key subspace into shards
using a static hashing function; the second tier explicitly

Design Space

Changes in
key distribution … CPU core

reassignments
… …

Task CPU CoreKey StateKey
Subspace

Figure 3: The design space of elastic executor against
changes in key distribution and core reassignment.

maintains a dynamic shard-to-task mapping, which gets up-
dated upon shard reassignments. We balance the workload
on a coarser-grained rather than a per-key basis, mainly
because a fine-grained method needs to maintain the work-
load for every single key and thus suffers from high memory
consumption. The choice of the number of shards provides
trade-offs between the quality of load balancing and mainte-
nance overhead. However, in practice, a reasonable number
of shards, e.g., 4 or 8 times to the number of tasks, achieves
good balancing quality while keeping low maintenance over-
head. We will discuss how shard number affects system per-
formance in some extreme settings in Section 5.3.

To guarantee state consistency, states have to be migrated
along with their shards among the tasks, leading to migra-
tion overhead and delay. Consequently, for rapid load bal-
ancing, the number of shard reassignments should be min-
imized. This optimization problem can be interpreted as a
NP-hard multi-way partitioning problem [29]. We use a sim-
ple heuristic algorithm similar to the First-Fit-Decreasing
algorithm [19] to solve it. Our intra-executor load balancing
algorithm refines the shard-to-task assignment in rounds
until the workload imbalance factor δ , defined as the ratio
of the maximum task workload to the average workload of
all tasks, is below a predefined threshold θ . In each round,
among all the possible reassignments that reassign a shard
from the most overloaded task to the least loaded task, the
algorithm picks the shard reassignment that reduces δ the
most. In our implementation, the workload of a particular
shard is measured as the aggregated computation cost of the
input data tuples processed within one-second sliding win-
dows. We choose θ = 1.2, allowing a maximum imbalance of
20% deviation from the average workload of the tasks. The
reassignment is triggered frequently, e.g., every 0.5 second,
to guarantee responsiveness to workload changes.

Intra-Executor StateManagement: Tominimize the state
migration overhead and enable efficient state access simulta-
neously, we employ an intra-process state sharing mechanism
in the elastic executors. In particular, each process of an elas-
tic executor maintains the states of its tasks in a lightweight
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Figure 4: The internal structures and working mechanisms of an elastic executor.

in-memory key-value store and provides a state access inter-
face to its tasks for state reads and updates on a per-key basis.
When shards are reassigned across nodes, up-to-date states
are always migrated among them to guarantee the state
consistency, which will be discussed in Section 3.2. While re-
taining efficient state access performance, this design avoids
state migration when shards are reassigned between tasks
on the same node, because the newly assigned task can al-
ways access the shard’s state via the interface without state
migration. Given the increasing number of CPU cores on
modern processors, many tasks can be created on a single
node. Consequently, intra-process state sharing can signif-
icantly reduce shard reassignment overhead. Furthermore,
our dynamic scheduler also optimizes the locality of CPU
resources for the elastic executors, providing the executors
more opportunities to benefit from state sharing.
Executor-Level Fault Tolerance: Fault tolerance [8, 11, 14,
35, 49] has been extensively studied in stream processing
systems and thus is neither the focus nor a contribution of
this paper. Here, we only discuss how to recover the remote
tasks of each elastic executor from failures so that Elasticutor
can utilize state-of-the-art state checkpoint techniques, such
as Pipelined Snapshotting Protocol [11], for fault tolerance.

Themain process of an elastic executor logically maintains
a primary copy of the state of its tasks. By default, the state
is maintained in memory in the main process for efficient
access, but can also be stored on an external storage when
the state is too large to fit in memory. The main process
also marks each input data tuple with an increasing tuple
ID. For each remote task T , the elastic executor maintains a
pending tuple queue to backup the data tuples sent to T and
a value ts indicating that all the data tuples with IDs smaller
than ts have been processed and the state updates resulted
from processing those tuples have been flushed back to the
primary copy. Each remote task periodically, e.g., every 10

seconds, sends the updates of its local state together with
tmax , i.e., the largest ID of the tuples it has been processed,
to the main process of the elastic executor. Upon receiving
the state updates from a remote task T , the elastic executor
updates the main copy of the state, removes the tuples with
ID no large than tmax in the pending queue ofT , and updates
ts = tmax . When a remote task T fails, the elastic executor
creates a new tasks with the main copy of the state and starts
the execution of the new task by replaying tuples with IDs
larger than ts in the pending queue of T .

3.2 Consistent Workload Redistribution
Although state sharing improves the efficiency of shard reas-
signment, attention needs be paid to guarantee consistency.
Generally speaking, despite using the similar procedure as
in key repartitioning of the resource-centric approach, we
achieve efficient shard reassignment with state consistency
by taking advantage of the inter-operator and inter-executor
independence enabled by the executor-centric approach.
Consider the case in Figure 4, where a tuple t1 is in the

pending queue of task T2, a tuple t2 just arrived at the ex-
ecutor’s main process, and a tuple t3 is to be emitted by an
upstream executor. Suppose all three tuples belong to shard
r4. If shard r4 is reassigned from the source task T2 to a new
destination task before t1 is processed or before the routing
of t2 and t3 are updated, the state will become inconsistent.
In particular, if the destination task is local, e.g., T1, then t2
might be processed before t1, violating the order preserving
requirement. If the destination task is remote, e.g., T0, the
modifications to states made by t1 will be lost.
Inter-Operator Consistent Routing: To guarantee consis-
tent routing, e.g., t3, from upstream operators to the correct
processes where the assigned tasks reside, an elastic execu-
tor implements a receiver daemon in its local main process
as the single entrance for all tuples coming from upstream



operators. The receiver routes tuples to the appropriate tasks,
local or remote, based on the internal routing table. Simi-
larly, an emitter daemon is implemented in the main process
as the single exit of the executor to forward output tuples
generated by the tasks to downstream operators. Remote pro-
cesses only communicate with the receiver and the emitter
on the main process of the elastic executor. Therefore, regard-
less of how shards are dynamically reassigned among the
tasks within an elastic executor, upstream and downstream
operators always send tuples to or receive tuples from the
executor via its receiver and emitter, avoiding any inter-
operator synchronization caused by shard reassignments. In
contrast, the resource-centric approach redistributes work-
load by operator-level key space repartitioning, leading to
synchronization with all the upstream executors.
Note that compared with the resource-centric approach

where tuples from upstream executors are directly routed to
the downstream operator, Elasticutor may involve additional
remote data transfer between the receiver/emitter and the
remote tasks. This is the trade-off we make to achieve rapid
elasticity. In typical workloads, the remote data transfer is
not the performance bottleneck, as shown in Figure 13. In
Section 5.3, we discuss how to avoid/reduce remote data
transfer in some extreme workloads by properly configuring
the number of executors of an operator.

Intra-Executor StateConsistency:To guarantee state con-
sistency during the reassignment of a shard, the elastic ex-
ecutor employs a key repartitioning procedure similar to the
operator-level repartitioning used in the resource-centric
approach, but does not involve any global synchronization.
The key is to ensure that a) the pending tuples, i.e., the un-
processed tuples of the shard queued in the source task, must
be processed before the shard state is migrated to the des-
tination task; and b) tuples with the same keys will not be
processed by any two tasks concurrently. During the reas-
signment of shard r4 in Figure 4, the routing for tuples of r4 is
paused and a labeling tuple is sent to its source taskT2. Since
tasks process their input tuples on a first-come-first-served
basis, any pending tuple already sent to T2 is guaranteed
to be processed when T2 pulls the labeling tuple from its
pending queue. After that, the state of r4 is migrated to the
destination task. State migration is omitted if the shard is
reassigned to a task local to its source task. After the state mi-
gration, the shard-to-task mapping is updated in the routing
table before the routing for tuples of r4 is resumed.

Discussions: It is worth noting that our proposed executor-
centric paradigm is applicable to other existing distributed
streaming systems, e.g., Apache Flink, Apache Heron, and
Apache Samza, where stateful processing can be parallelized
by partitioning states and data under a key space. For state-
less applications, our approach can still be applied but may

not necessarily be the best choice, since load balancing can
be easily achieved by simply sending tuples in round robin
or to the least-loaded executors.
Although our approach does not apply to batch-based

systems, our two-tier load balancing design has some sim-
ilarities with the approaches taken by the mini-batch ori-
ented Spark Streaming [50]. Two major differences are: 1)
our design of an extra intermediate layer of shards provides
trade-offs between maintenance costs and balanced load, and
2) our design for measuring and balancing are more natural
to streaming system where operations process input tuples
upon arrival rather than based on mini-batches.

4 DYNAMIC SCHEDULER
The objective of the dynamic scheduler is to satisfy user-
defined latency requirements by adaptively allocating CPU
cores to the elastic executors under a changing workload.
By using instantaneous performance metrics measured by
the system, the scheduler first estimates the number of cores
needed for each executor based on a queueing network
model, and further (re)assigns the physical cores to the ex-
ecutors so as to minimize the reallocation overhead and
maximize the locality of computation within the executors.

4.1 Model-Based Resource Allocation
We model a topology E = {1, · · · ,m} of m elastic execu-
tors as a Jackson network, in which each executor j ∈ E is
regarded as an M/M/kj system [42], where kj denotes the
number of allocated CPU cores to j. The average processing
latency of an input stream, denoted as E[T ], can be calculated
as a function of the resource allocation decision k as

E[T ](k) =
1
λ0

m∑
j=1

λjE[Tj ](kj ), (1)

where λ0 denotes the arrival rate of the input stream, Tj
and λj denote the average processing time and the arrival
rate of executor j, respectively. Each E[Tj ](kj ) is bounded
when kj > λj/µ j , where µ j denotes the processing rate of
elastic executor j and can be calculated as a function of the
parameters λ0, {λj } and {µ j } measured by the system. Based
on Equation (1), the scheduler attempts to find an allocation
k to ensure that E[T ] is no larger than the user-specified
latency target Tmax , while minimizing the total number of
CPU cores, i.e.,

∑
kj . In particular, each kj is initialized to be⌊

λj/µ j
⌋
+ 1, which is the minimal requirement to make the

system stable. We repeatedly add 1 to the value in the vector
k that leads to the most significant decrease in E[T ], until
E[T ] ≤ Tmax or

∑
kj exceeds the number of available CPU

resources. This greedy algorithm has shown to be optimal
[22] in finding the solution k.



4.2 CPU-to-Executor Assignment
The performance model only suggest a new allocation, i.e.,
the number of CPU cores each executor needs, resulted from
the workload fluctuation; the scheduler still needs to accom-
modate the new allocation plan by updating the existing
core-to-executor assignment. The CPU reassignment for a
new allocation plan is key to the system performance, since
it may introduce 1) the state migration costs during the tran-
sition, and 2) the remote data transfer costs afterwards. For
instance, upon the reassignment of a CPU core, an elastic ex-
ecutor creates a new task, which involves in state migration
and future remote data transfer if the CPU core is remote
to the elastic executor. To optimize execution efficiency, we
search for CPU-to-executor assignments that minimize mi-
gration costs, while constraining the computation locality
to limit future remote data transfer costs.
To model the migration costs, we consider a cluster of n

nodes where each node i has ci CPU cores. For any executor
j ∈ E, we denote the node where its main process resides by
I (j) and the number of cores assigned to it on all nodes by a
column vector xj = (x1j , · · · ,xnj )

T . We define X j =
∑n

i=1 xi j
as the total number of assigned cores for j and denote a
CPU-to-executor assignment by a matrix X = (x1, · · · , xm).
Given any new allocation k, a transition from an existing
assignment X̃ to a new assignment X needs to perform a
set of CPU allocations/deallocations. The overhead of core
reassignment is dominated by the state migration cost, which
is proportional to the size of state moved across the network.
We denote the aggregate state size of any executor j by sj .
For simplicity, we assume the shards of an elastic executor
are evenly distributed across the allocated CPU cores; and
therefore, the amount of state data associated with each CPU
core is approximately sj/X j . Given any allocation k, available
cores c and an existing assignment X̃ , we formulate the CPU
assignment problem as follows.

minimize
X

C(X |X̃ ) =

m∑
j=1

n∑
i=1

max

(
0,
sj x̃i j

X̃ j
−
sjxi j

X j

)
s.t. (a)

m∑
j=1

xi j ≤ ci , ∀i ≤ n;

(b) X j ≥ kj , ∀j ∈ E;
(c) xI (j)j = X j , ∀j ∈ E(φ).

The above optimization problem minimizes the migration
costs C(X |X̃ ) of transition from an existing assignment X̃ to
a new assignmentX , where each term in the summation mea-
sures the cost for executor j to migrate its state out of node i .
The constraints include (a) the number of CPU cores, (b) the
allocation requirement and (c) the computation locality, i.e.,
requiring all cores assigned to the set E(φ) of executors to be

on their local nodes. The system measures the instantaneous
per-core data-intensity of any executor j by its total input
and output data rates divided by the number of cores kj , and
E(φ) denotes the set of executors whose data-intensity is
above a threshold φ. Because data-intensive executors will
incur higher network costs if their assigned cores are remote,
we enforce the computation locality by avoiding assigning
remote cores to members of E(φ). This integer programming
problem can be reduced to the NP-hardmultiprocessor sched-
uling problem [23]. Thus, we design an efficient greedy Algo-
rithm 1 to find an approximate solution. For any assignment
X , we define E+ = {j ∈ E|X j < kj } to be the set of under-
provisioned executors, E+∆ = {j ∈ E+∩E(φ)} to be the subset
of data-intensive executors, and E− = {j ∈ E|X j > kj } to
be the set of over-provisioned executors. We use C+i j (X ) and
C−
i j (X ) to denote the overhead of allocating/deallocating a

CPU core on node i to/from executor j, respectively, which
can be derived as C+i j (X ) = sj (X j − xi j )/(X j (X j + 1)) and
C−
i j (X ) = sj (X j − xi j )/(X j (X j − 1)).

Algorithm 1: Dynamic Allocation Algorithm
Input: allocation k, assignment X̃ , CPU cores c, threshold φ
Output: new assignment X

1 Initialize the new partitioning as X = X̃ ;
2 Find the under- and over-provisioned executors E+ and E−,

and the data-intensive executors E+∆ ;
3 Sort E+ based on the data-intensity of the executors;
4 for each j ∈ E+ in non-descending order do
5 while CPU cores are insufficient, i.e., X j < kj do
6 if j is data-intensive, i.e., j ∈ E(φ) then
7 i = I (j); j ′ = argmin

ĵ ∈E\E+∆

C−

i ĵ
(X )

8 else
9 (i, j ′) = argmin

ĵ ∈E−,1≤î≤n
C−

î ĵ
(X ) +C+

î ĵ
(X )

10 if (i, j ′) is found then
11 xi j′ = xi j′ − 1; xi j = xi j + 1

12 else
13 return FAIL;

14 return X

Algorithm 1 sorts the executors in E+ by data-intensity
in descending order and tries to assign the target number
of CPU cores to each executor j one by one by deallocating
cores from other executors. Specifically, if elastic executor j
is data-intensive, i.e, j ∈ E(φ), it only accepts CPU cores on
node i = I (j), to avoid creating remote tasks. Consequently,
among all the non-data-intensive executors, the algorithm
finds a CPU core on node I (j) that can be reassigned to j
with minimal deallocation overhead (Line 7). In contrast, if j



is not data-intensive, it accepts CPU cores on any node. The
algorithm searches all the executors in E− for an executor
with a CPU core that can be reassigned to j with the minimal
deallocation and allocation overhead (Line 9). In either case, if
such a valid core reassignment is found, the algorithm added
it to the new assignmentX ; otherwise, it returns FAIL, which
indicates that no feasible solution can be found and implies
that a higher data-insensitivity threshold φ is required to
obtain a feasible solution.

The choices of φ provide trade-offs between the feasibility
of Equation 4.2 and the computation locality of the elastic
executors. Since the dynamic assignment algorithm is very
efficient, we run the algorithm using a low default value
φ = φ̃. If no feasible solution is found, we double φ and re-
run the algorithm until we find one. In our experiments, we
set φ̃ to be 512 KB/s, below which the benefit of computation
locality is negligible.
Discussions: Our design of the dynamic scheduler applies
to stream processing that uses continuous operators and fol-
lows the dataflow model [5]. The scheduler determines the
resources needed for each executor to fulfill latency require-
ments, and calculates the resource assignment for minimiz-
ing state migration costs. Other schedulers work at this level
include DS2 [28] for Flink, Dhalion [21] for Heron, RAS [36]
for Storm, and so on. In contrast, cloud-based resource man-
agement systems such as YARN [44] andMesos [25] are more
cluster-centric [26, 27], i.e., they primarily aim to manage
cluster resources among different applications. They usually
receive resource demands from the application manager and
make decisions on how to provision resources based on cri-
teria like efficiency and fairness. A negotiator/coordinator
module is commonly developed for assisting interactions
between schedulers at different levels. Typical examples in-
clude Storm-on-Yarn [3] and Flink-on-Yarn [2].

5 PERFORMANCE EVALUATION
We implemented a prototype of Elasticutor in about 10,000
lines of Java on Apache Storm [43]. The source codes of
Elasticutor are available at [4]. Storm is a popular distributed
stream processing system which exposes low level APIs,
such as the Bolt API. This is relatively easier for prototyping
research ideas. Storm follows the static approach and its
operators are implemented by users via an abstract class, Bolt.
We added a new abstract class, ElasticBolt, which provides
the same programming interface as Bolt but exposes a new
state access interface to the user space. For any operator
defined as an ElasticBolt, Elasticutor creates a number of
elastic executors with built-in state management, metrics
measurement and elasticity functionalities. The dynamic
scheduler is implemented as a daemon process running on
Storm’s master node (nimbus).

calculatorgenerator

Executor

Executor

Executor

Executor

… …

Figure 5: Micro-benchmarking simulation topology.

Our experiments are conducted on Amazon EC2 with 32
t2.2xlarge instances (nodes), each with 8CPU cores and 32GB
RAM running Ubuntu 16.04. The network is 1Gbps Ethernet.
Executors are assigned to the nodes in a round-robin manner
under all approaches. Unless otherwise stated, Elasticutor
uses 32 elastic executors per operator and 256 shards per
executor (8192 shards per operator). For fair comparison, we
create enough executors for the operators in the static ap-
proach to fully utilize all CPU cores in the cluster; and set the
granularity of key space partitioning in the RC approach to
be 8192 shards per operator, the same as in Elasticutor. To en-
sure system stability, existing stream systems such as Storm,
Heron and Flink implement back-pressure mechanisms to
control the input rates to the operators. To focus on system
performance, we evaluate pressured scenarios where suffi-
ciently high arrival rates keep the input queues non-empty
and possibly trigger Storm’s back-pressure mechanism.
We briefly discussed Elasticutor in the design space of

stateful streaming processing in Section 2.3. In this section,
we compare the performance of Elasticutor with that of the
static approach (the default Storm) and resource-centric (RC)
approaches. The key differences in the three approaches
are summarized in Section 2.2. We implemented RC based
on Storm by enabling creation/deletion of executors and
operator-level key repartitioning. For fair comparison, RC
uses the same performance model, load balancing algorithm
and intra-process state sharing mechanism as Elasticutor. We
will evaluate the peformance and trade-offs that Elasticutor
makes along the different dimensions in the design space,
including the state size, per-tuple computation and size, and
the skewness and dynamicity of data streams. In general,
the design of Elasticutor amis to accommodate computation-
intensive workloads as long as sufficient computational re-
sources are available for scaling in the system. However, be-
cause the introduction of remote tasks might incur data trans-
mission and state migration overhead and delays, our design
assumes that the workload will not be too data-intensive
with respect to tuple size and state size, and the network
bandwidth capacity does not become the bottleneck. We as-
sume that the skewness exhibited in the data distribution on
the key space is a norm and we focus on more challenging
scenarios where the skewness also changes abruptly, which
can be shown in the equity trading data set and evaluation.
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Figure 6: Comparison with varying ω.

5.1 Micro-Benchmarking
In this subsection, we use a simple yet representative topol-
ogy, shown in Figure 5, which allows easy control over the
workload characteristics, such as input rates, computation
cost and data distribution. The topology consists of a gener-
ator and a calculator, and input data stream are fed by the
generator to the calculator for processing. We ensure that
the data generation rate saturates the input queues of the cal-
culator. The processing time for each tuple in the calculator
operator follows a normal distribution N(µ,δ 2 = 0.5µ). The
computation is implemented by running data encryption in
loop within the execution time to exhaust the CPU cycles
and simulate the computation-intensive workload. Unless
otherwise stated, each tuple consists of an integer key and
a 128-byte payload, and takes an average CPU cost of 1 ms
for processing. The key space contains 10K distinct values,
whose frequencies follow a zipf distribution [37] with a skew
factor of 0.5. The default state size is 256MB, with 32KB for
each shard. To emulate workload dynamics, we shuffle the
frequencies of tuple keys by applying a random permutation
ω times per minute.
Robustness to workload dynamics: Figure 6 plots the
throughput and average processing latency under the three
approaches asω varies along the x-axis.We observe that Elas-
ticutor consistently outperforms the others in terms of both
metrics when the workload is dynamic, i.e., ω > 0. Specif-
ically, the performance of the static approach is poor due
to workload imbalance caused by skewed key distribution,
but is relatively stable across all scenarios as no elasticity
operations are performed. Since both RC and Elasticutor are
able to adapt to skewed key distribution, they outperform
the static considerably when ω is small. However, as ω in-
creases, although the performance of both RC and Elasticutor
decreases due to higher operational costs for elasticity, the
performance degradation of Elasticutor is marginal, while
that of RC becomes 2-3 orders of magnitude larger, making
RC useless as ω reaches 16.

To better explain the performance of the three approaches
as ω varies, we focus on the scenario of ω = 2, i.e., shuffle
every 30 seconds, and plot the instantaneous throughput
measured in a sliding time window of 1 second in Figure 7.
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Figure 7: Instantaneous throughput with ω = 2.

We observe that the throughput of the static approach is
consistently much lower than that of RC and Elasticutor,
although it does not vary much. Both RC and Elasticutor
exhibit a transient throughput degradation every 30 seconds,
due to the executions of elasticity operations triggered by
key shuffles. However, the degradation in RC is much worse
and its transient period lasts 10 to 20 seconds, while that of
Elasticutor only lasts 1 to 3 seconds. This explains the reason
behind the widening performance gap in the two approaches
as the workload becomes more dynamic.
Performance under varying data intensity: To evaluate
how data intensity of the workload affects the performance
of the three approaches, we vary the tuple size, denoted as s ,
and the computation cost per tuple, denoted as c , and com-
pare the performance of the three approaches in Figure 8. The
results show that with higher data intensity, e.g., with large
tuple size or smaller computation cost per tuple, throughput
drops for the three approaches due to the higher data trans-
fer overhead. For instance, when c = 0.01ms and s = 2KB,
the data transfer requirement for full-speed tuple processing
on one CPU core is 2Gbps, which exceeds the network band-
width, i.e., 1Gbps, and thus leads to significant performance
degradation for all the approaches. However, Elasticutor is
generally more sensitive to tuple size than its competitors
especially when the computation cost is extremely low, e.g.,
c = 0.01ms per tuple, because of its unique two-level tuple
routing mechanism, which introduces higher data transfer
overhead with higher data intensity.
Performance under varying state size: Figure 9 com-
pares the performance of three approaches in terms of both
throughput and latency as the state size varies along the
x-axis. Note that as there are 8192 shards per operator, the
state size of an operator will be 256GB when the state size
per shard is 32MB, which is considerably large. The result
shows that as the state size increases, the performance of
both the RC and Elasticutor drops, due to the increased state
migration overhead associated with larger state sizes. When
the state size approaches 32MB, as an extreme case, both
Elasticutor and the RC perform worse than the static ap-
proach because of the huge operational costs of performing
elasticity. We also observe that with the same state size, Elas-
ticutor performs better than the RC approach. This indicates
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Figure 8: Varying computation costs and tuple sizes.

that the techniques used in Elasticutor, such as state sharing
mechanism and the dynamic schedule, can effectively reduce
the state migration overhead in the elasticity operations.
Robustness to skewed executor workload distribution:
In practice, the workload may not be evenly distributed
among the executors, either due to the skewed key distribu-
tion or due to the improper configuration of the operator-
level key partitioning function. To evaluate the robustness
of the three approaches to the skewed executor workload
distribution, we evaluate their performance with varying key
distribution skewness controlled by the skewness factor α in
Figure 10. Note that the larger α is, the larger skewness the
key distribution has. For instance, the key follows a uniform
distribution when α = 0, while most workload falls into a
few keys when α ≥ 0.8. The results show that the static
approach suffers greatly from load imbalance with no sur-
prise, while Elasticutor and the RC are much more resistant
to the executor load imbalance when α < 0.8. The major
observation is that Elasticutor consistently outperforms the
RC when α ≤ 0.6, but its performance drops sharply and is
worse than the RC under extremely skewed workload dis-
tribution, e.g., α ≥ 0.7. This indicates that despite relying
on creating more remote tasks to handle skewed executor
workload distribution, the executors in Elasticutor are able to
handle workload imbalance up to α = 0.5, without introduc-
ing noticeable latency increase and throughput degradation
in running remote tasks. However, when 0.6 ≤ α ≤ 0.8, the
most overloaded executors cannot further offload its work-
load by effectively utilizing more remote tasks, mainly due to
the congested network bandwidth, consequently becoming
the performance bottleneck and resulting in poor system
throughput and latency.
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Figure 9: Comparison with varying state size.
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Figure 11: Breakdown of shard reassignment time.

Shard reassignment cost: Because both the RC approach
and Elasticutor use shard reassignment to balance the work-
load, we compare their costs to better understand the dif-
ferent delays incurred. Figure 11 shows the average intra-
and inter-node reassignment time per shard, broken down
into synchronization time and state migration time. We ob-
serve that the shard reassignment time is much longer in
RC than in Elasticutor, mainly due to the extremely long
synchronization time in the RC approach. We can also see
that Elasticutor takes shorter time in state migration than
RC, but the difference between the two approaches in state
migration is minor compared to that in synchronization time.

To gain insights into the synchronization time differences
between the two approaches, we vary the number of up-
stream executors and find that RC takes 2-3 orders of magni-
tude longer time to synchronize than Elasticutor and their
difference widens with more upstream executors, as shown
in Figure 12(a). Elasticutor follows the executor-centric par-
adigm and thus avoids synchronization with upstream ex-
ecutors during the shard reassignments. As a result, its syn-
chronization time is around 2 ms regardless of the number
of upstream executors. In contrast, in the RC approach, the
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Figure 12: Effect of the number of upstream executors
and the state size.

routing tables of upstream executors need to be updated and
global synchronization is required to clean the in-flight tuples
between the executor and the upstream executors. Conse-
quently, the synchronization time in RC is much higher and
grows greatly with the number of upstream executors.
Figure 12(b) plots the state migration time as the state

size varies. We observe that the latency of intra-node state
migration is negligible in both approaches, because of the
intra-process state sharing mechanism. The time of inter-
node state migration increases significantly as the state size
reaches 32 MB, where network data transfer of the state
is the dominant overhead in the state migration process.
The figure also shows that given the same state size, the
Elasticutor takes slightly shorter time to migrate the state
than RC, due to inter-executor independence enabled by the
executor-centric paradigm.

5.2 Scalability of a Single Elastic Executor
The major advantage of Elasticutor is that it handles work-
load dynamics by allocating more CPU cores rather than
operator-level key space repartitioning. Although in a rea-
sonable setting an operator typically has enough executors to
amortize the workload on a single executor, it is still possible
that an executor may be so heavily loaded that many remote
tasks are needed, due to skewed key distribution, improper
operator-level partitioning or unnecessarily few executors.
Consequently, for robustness of Elasticutor, it is crucial that
an elastic executor has good scalability, i.e., being able to
efficiently scale out to many CPU cores, and not introducing
noticeable latency when running remote tasks.
To evaluate to what extend the elastic executor can effi-

ciently scale out, we set up only ONE elastic executor for the
calculator operator, but gradually allocate more CPU cores
and measure its throughput and processing latency. As each
node has 8 CPU cores, the first 8 cores allocated are local,
with the subsequent ones being remote. In our evaluation, we
vary data intensity and operational cost of elasticity, which
are the major factors affecting the scalability. The former
decides the long-term cost of remote data transfer in running
a remote task, and is proportional to tuple size and reversely
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Figure 13: The scalability of a single elastic executor.

 0.1

 1

 10

 100

 1  2  4  8  16  32  64  128 256

La
te

n
cy

 (
m

s)

Number of allocated CPU cores

10ms per tuple
1ms per tuple

0.1ms per tuple
0.01ms per tuple

(a) Varing computation costs

 0.1

 1

 10

 100

 1  2  4  8  16  32  64  128 256

La
te

n
cy

 (
m

s)

Number of allocated CPU cores

tuple size=8KB
tuple size=2KB

tuple size=512B
tuple size=128B

(b) Varing tuple sizes

Figure 14: The 99th percentile latency as scaling out
CPU cores.

proportional to the computational cost per tuple. The latter
affects the short-term transit overhead in performing elas-
ticity operations, and has positive correlation with the state
size and workload dynamics (ω).

Figure 13 plots the scalability of an executor under differ-
ent computational costs (left) and tuple sizes (right). We ob-
serve that the single elastic executor generally can efficiently
scale out to the whole cluster (256 CPU cores), indicating
that cost of remote data transfer is negligible. We also ob-
serve that the elastic executor cannot efficiently utilize more
than 16 CPU cores with a very large tuple size, e.g., 8KB, or
very low computation cost, e.g., 0.01ms per tuple, indicating
that the huge remote data transfer linked to the high data in-
tensity prevents the executor from scaling. Figure 14 shows
the 99% latency as an elastic executor scales out. We can see
that in most settings, processing latency does not increase
noticeably as the elastic executor scales out, due to the effi-
cient network data transfer enabled by Netty [1]. However,
in the data-intensive workload, e.g., computational cost ≤
0.1ms or tuple size ≥ 2KB, the latency increases greatly as
the number of allocated CPU cores exceeds the points where
remote data transfer becomes the performance bottleneck.
Note that the latency does not grow infinitely, due to the
back-pressure mechanismwe implemented between any pair
of input-output executors.

Figure 15 shows the scalability of an elastic executor under
various shard state sizes with ω = 2 (left) and 16 (right).
The results show that the elastic executor scales efficiently
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Figure 15: Varying the operational cost of elasticity.

under all state sizes but 32MB. With a large state size, the
state migration becomes a performance bottleneck, which
prevents the executor from efficiently using remote CPU
cores. By comparing both sub-figures, we observe that as
ω increases to 16, the scalability under the large state size
decreases considerably, due to the increased requirement of
state migration linked to higher workload dynamics.

5.3 Choosing Appropriate Parameters
There are two important parameters in Elasticutor: the num-
ber of shard per executor, denoted as z, and the number of ex-
ecutors per operator, denoted asy. As a rule of thumb, setting
z to be between 256 and 1024 can achieve good intra-executor
load balance, and setting y to be the number of nodes for
computation-intensive operators can provide those opera-
tors with sufficient potential in scaling out upon workload
bursts. However, in what follows, we evaluate the system
performance with a large range of (y, z) under various work-
load, so as to understand why and how the two parameters
impact system performance and how to choose proper pa-
rameters under extreme workloads. To make comprehensive
observation, we use three representative workloads, namely
the default workload, data-intensive workload and highly
dynamic workload. Let s and ω denote the tuple size in bytes
and key shuffles per minute, respectively. In the default work-
load, (s,ω) = (128B, 2). We get data-intensive workload and
highly dynamic workload by increasing s to 8K and ω to 16,
respectively. Thus, (s,ω) = (8K , 2) for data-intensive work-
load and (s,ω) = (128B, 16) for highly dynamic workload.
Figure 16 shows the system throughput with various y and
z under the three workloads. For comparison, we also show
the throughput of the static and RC approaches in the figures.

Number of shards: From Figure 16, we observer that as
z increases, the throughput generally increases though the
marginal increase is diminishing. This shows when using
too few shards, e.g., z ≤ 64, poor quality of intra-executor
load balancing prevents elastic executors from efficiently
utilizing multiple cores; however, too fine-grained sharding,
e.g., z ≥ 1024, does not further improve throughput as intra-
executor load balancing is already effective. Base on those
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Figure 16: The impact of number of executors (y) and
number of shards (z) on the throughput of Elasticutor.

observations, we verify that 256 to 1024 shards per executor
achieves good performance.
Number of executors: As shown in Figure 16(a), for a suf-
ficiently large z, Elasticutor achieves promising performance
except for y = 256. When y = 256, i.e., the number of CPU
cores in the cluster, each elastic executor can only be allo-
cated one CPU core. As such, executors lose elasticity and
Elasticutor is downgraded to the static approach. By compar-
ing Figure 16(a) with Figure 16(b), we can see that as tuple
size increases to 8K , the performance of the static and the
RC does not change much, while that of Elasticutor under
y = 1 drops severely. Compared with the default workload,
the cost of remote data transfer in running a remote task in
the data-intensity workload is 64 times higher. This limits
the scalability of a single executor and thus results in poor
performance for small y where a single executor needs to
scale to many remote CPU cores. By comparing Figure 16(a)
to Figure 16(c), we observe that as the shuffle frequency in-
creases from 2 to 16, although the throughput decreases in
general, the reduction is much greater when y is small, i.e., 1
or 8. Under a dynamic workload with frequent shuffles, e.g.,
ω = 16, more shards need to be reassigned for load balancing,
incurring high migration cost. In contrast, when y is suffi-
ciently large, most executors can scale using local CPU cores
and thus avoid state migration due to intra-processing state
sharing mechanism; and therefore, the throughput does not
decrease much. In conclusion, setting one or two executors
per node is robust to various workloads.
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Figure 17: The topology of the SSE application.
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Figure 18: Arrival rates of 5 most popular stocks.

5.4 Evaluation of Realtime Application
To evaluate the performance of Elasticutor for practical ap-
plications, we use a dataset of anonymized orders for stocks
traded in the Shanghai Stock Exchange (SSE), collected over
three months with around 8million records per trading hour.
The application performs the market clearing mechanism
of the stock exchange and provides real-time analytics. The
topology of the application is shown in Figure 17. The input
stream consists of limit orders from buyers and sellers, who
specify their bid and ask prices for a particular volume of
a particular stock. An order tuple is 96 bytes in size. Upon
the arrival of a new order, a transactor operator executes it
against the outstanding orders and determines the quantities
traded and the cash transfers made. Once such a transaction
is made, a 160-byte transaction record, including the time,
number of shares and price of the transaction and IDs of the
seller, buyer and stock, is sent to the downstream operators,
including 6 operators for statistics and 5 operators for event
processing. The analytics operators generate statistics, such
as the moving averages and the composite index, and trigger
user-defined events, such as alarms when the transaction
price of a particular stock exceeds a predefined threshold.
The state for each statistics operator is around 200MB to 400
MB in size, while the event processing operators have rela-
tively small state below 10MB. As transactions and analytics
concern individual stocks, we partition the space of stock
IDs for parallel processing. Due to the unpredictable nature
of stock trading, both the arrival rates and distribution of
the orders of stocks fluctuate greatly over time, resulting
in a highly dynamic workload. To illustrate the workload
dynamics, Figure 18 shows the instantaneous arrival rate of
5 most popular stocks.

Besides the static, RC and Elasticutor, we test a naive
executor-centric (naive-EC) implementation, which is the
same as Elasticutor except that optimizations for migration
cost and computation locality are disabled in the scheduler.
Figure 19 plots the instantaneous throughput and the 99th
percentile processing latency under the four approaches run-
ning on 32 nodes. We observe that both naive-EC and Elas-
ticutor outperform the static and RC approaches, approxi-
mately doubling the throughput and reducing the latency
by 1-2 orders of magnitude. Although the performance gaps
between the naive-EC and Elasticutor are recognizable, they
are small compared to those between the executor-centric
approaches and the other two approaches. This observation
indicates that despite the considerable performance improve-
ment enabled by the optimizations in the dynamic scheduler,
the better performance of Elasticutor is mainly due to the
advantageous executor-centric paradigm employed.
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Figure 19: Performance comparison on real workload.

To further show the reason behind the performance gap
between the naive-EC and Elasticutor, we show their state
migration rate and the remote data transfer rate in Table 2.
The former rate is the aggregated size of state the whole
system migrates across network in a unit of time. The latter
rate is the aggregated amount of data transfered in a unit
of time between all the elastic executors and their remote
tasks. We observe that the rates of state migration and re-
mote data transfer under naive-EC are 5x and 10x higher
than those under Elasticutor, respectively. With less state
migration, it will be more efficient for the elastic executors to
transition to a new resource allocation plan, thus achieving
higher performance. Similarly, with less remote data transfer,
more network bandwidth can be used by inter-operator data
transfer, further improving the performance.



Table 2: Comparing naive-EC with Elasticutor.
Metrics naive-EC Elasticutor

State migration rate (MB/s) 13.9 2.4
Remote data transfer rate (MB/s) 235.3 21.6

Table 3: Scalability of Elasticutor.
number of nodes in the cluster 8 16 32

throughput (103 tuples/s) 66.6 121.3 218.6
scheduling time (ms) 4.1 5.2 5.7

Finally, we evaluate the scalability of Elasticutor under the
SSE workload. We vary the size of the computing cluster, i.e.,
the number of nodes, and measure Elasticutor’s throughput
and scheduling cost, i.e., the average time needed for the
dynamic scheduler to calculate a new CPU-to-executor as-
signment. Keeping a low scheduling cost is important for the
system to be adaptive to a dynamic workload. Table 3 shows
the throughput and scheduling cost as the scale increases.
We observe that the throughput grows nearly linearly as
the cluster grows; and the scheduling cost is around several
milliseconds and grows slightly with the number of nodes.

6 RELATEDWORK
Stream Processing Systems. Early stream processing sys-
tems, such as Aurora [7], Borealis [6], TelegraphCQ [17] and
STREAM [10] were designed to process massive data updates
by exploiting distributed but static computational resources.
With cloud computing technologies, a new generation of
stream systems emerged, with emphasis on parallel data
processing, availability and fault tolerance, to fully exploit
flexible resource management schemes on cloud-based plat-
forms. Spark Streaming [50], Storm [43], Samza [35], Heron
[31], Flink [12] and Waterwheel [46] are the most popular
open-source systems providing distributed stream process-
ing and analytics. Big industrial players are also developing
in-house distributed stream systems such as Muppet [32],
MillWheel [8], Trill [16], Dataflow [9] and StreamScope [33].
Elasticity. A large body of work explores the possibility of
achieving elasticity. Castro et al. [15] combine the resource
re-scaling operation with fault tolerance functionality in dis-
tributed stream systems, such that the intermediate states
boundwith the processing logic are written to persistent stor-
age before migrating to new computation nodes. Wang et al.
[47] propose elastic pipelining to enable dynamic, workload-
aware run-time reconfiguration for distributed SQL query.
An adaptive partitioning operator is proposed in Flux [39]
to enable partition movement among nodes for load balance.
However, as their workload migration is on a per-partition
basis, this method faces difficulties when a single partition
exceeds the processing capability of any node in the cluster.
ChronoStream [48] partitions computation states into a col-
lection of fine-grained slice units and dynamically distributes

them across nodes to support elasticity. Gedik et al. [24] pro-
pose mechanism to scale stateful operators without violating
state consistency. Chi [34] is a control panel with capability
of monitoring and dynamic re-configuration. However, those
methods achieve elasticity following the resource-centric par-
adigm which incurs expensive synchronization and prevents
rapid elasticity. They are applicable in the scenarios where
elasticity functionalities are used at a coarse time granularity,
i.e., every 5 minutes; the achieved elasticity is too slow to
be applicable in the application with highly dynamic work-
loads. Elasticutor avoids the problem by employing a new
executor-centric approach. This approach greatly reduces
the synchronization overhead in performing workload rebal-
ance and therefore enables workload redistribution within
several milliseconds.

Workload Distribution. Generic workload distribution for
distributed stream systems is a challenging problem, due to
the high skewness and huge variance in the incoming data
stream over time. Shah [39] et al. designed dynamic work-
load redistribution mechanisms for individual operations in
a traditional stream processing framework, e.g., Borealis [6].
[24] and [20] studied the mixed routing strategies to group
the workload by its keys to dynamically balance the load in
terms of CPU, memory and bandwidth resource. TimeStream
[38] adopts a graph restructuring strategy, by directly replac-
ing the original processing topology with a completely new
one. It is, however, challenging for the system to monitor and
optimize the topology in a huge search space of all applica-
ble graphical structures. Cardellini et al. [13] studied stateful
task migration on top of Storm. Ding et al. [18] discussed
the long-term optimization on making task migration plans
based on Markov Decision Processes (MDPs) to improve the
resource utilization of distributed stream engines. However,
Elasticutor not only achieves load balancing in workload
distribution, but also takes migration cost minimization and
computation locality into consideration.

7 CONCLUSION
We have designed and implemented Elasticutor, which en-
ables rapid elasticity for stream processing systems. Elasticu-
tor follows a new executor-centric approach that statically
binds executors to operators, but allows executors to scale
independently. This approach decouples the scaling of opera-
tors from the global synchronization needed for stateful pro-
cessing. The Elasticutor framework has two building blocks:
elastic executors, which perform dynamic load balancing,
and a scheduler that optimizes the use of computational re-
sources. Experiments show that compared with a traditional
resource-centric approach to providing elasticity, Elasticu-
tor doubles the throughput and achieves an average latency
orders of magnitude lower.
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A EXTENSIVE EXPERIMENTAL RESULTS
In Section 5.4, we have conducted experiments with the re-
altime application, e.g., the Shanghai Stock Exchanged (SSE
application), to compare the throughput and 99 percentile
processing latency under the four approaches running on
32 nodes, as plotted in Figure 19. In Figure 20, we plot the
average processing latency of the four approaches running
on 32 nodes. We observe that the Elasticutor outperforms
the other three approaches in terms of the average process-
ing latency, which further verifies the advantageous of the
executor-centric paradigm we proposed and employed.
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Figure 20: Performance comparison on real workload.

B DISCUSSION ON THE FUTUREWORK
Although our scheduling algorithm improves computation
locality effectively and prefers to allocate tasks local to the
main process of the executor, it is possible that in some ex-
treme workloads, e.g., highly skewed key distribution, some
executors may run excessive tasks with most tasks being
remote, thus introducing extensive remote data transfer. To
tackle this problem, we can detect the overloaded executors
and split them into more executors with operator-level key
repartitioning at a coarse time granularity, e.g., every 10 min-
utes. This is also useful when the workloads has increased
significantly and the system needs to gracefully scale out
to many new nodes, e.g., from initial 10 nodes to 100 nodes.
Similarly, when the total workload decreases substantially, it
is desirable to merge some idle executors so that some nodes
can be freed up. In the future, we plan to develop a hybrid
framework that uses elastic executors for rapid elasticity and
infrequent operator-level key space repartitioning for long-
term optimizations, such as offloading congested executors
or scaling out/in the entire system.
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