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Abstract— In a stream data analytics system, input data arrive
continuously and trigger the processing and updating of analytics
results. We focus on applications with real-time constraints,
in which, any data unit must be completely processed within
a given time duration. To handle fast data, it is common to place
the stream data analytics system on top of a cloud infrastructure.
Because stream properties, such as arrival rates can fluctuate
unpredictably, cloud resources must be dynamically provisioned
and scheduled accordingly to ensure real-time responses. It is
essential, for existing systems or future developments, to possess
the ability of scaling resources dynamically according to the
instantaneous workload, in order to avoid wasting resources
or failing in delivering the correct analytics results on time.
Motivated by this, we propose DRS, a dynamic resource scaling
framework for cloud-based stream data analytics systems. DRS
overcomes three fundamental challenges: 1) how to model the
relationship between the provisioned resources and the applica-
tion performance, 2) where to best place resources, and 3) how to
measure the system load with minimal overhead. In particular,
DRS includes an accurate performance model based on the theory
of Jackson open queueing networks and is capable of handling
arbitrary operator topologies, possibly with loops, splits, and joins.
Extensive experiments with real data show that DRS is capable
of detecting sub-optimal resource allocation and making quick
and effective resource adjustment.

Index Terms— Cloud computing, queueing network model,
resource auto-scaling, stream data analytics.

I. INTRODUCTION

IN APPLICATIONS such as analytics over microblogs,
video feeds or sensor readings, data records are not
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Fig. 1. An illustration of stream data analytics applications.

available beforehand, but gradually and continuously arrive in
the form of streams. A stream data analytics system handles
such streams, executes user-defined computation logics and
produces analysis results and/or statistical updates. Often,
users are interested in performing data analytics in real time,
meaning that the results/updates must be produced within
a given time period after any new input data arrives. For
instance, for a stream data analytics system monitoring sur-
veillance video streams in hospital wards, events such as a
patient falling should be detected promptly to alarm doctors
and nurses in time.

To handle fast, high-volume streams with stringent
real-time constraints, it is increasingly common to place
stream data analytics systems on top of a cloud infrastructure,
which provides virtually unlimited computing resources on
demand. Because key properties of a data stream such as its
volume, arrival rates and value distribution, can fluctuate in an
unpredictable manner, the cloud-based stream data analytics
systems should dynamically provision cloud resources for
each application so as to satisfy the real-time constraints with
minimum resource consumption. Meanwhile, for each appli-
cation, resources need to be carefully scheduled to different
components to optimize performance. Misplacing resources
may cause not only poor resource utilization, but system
instability as well.

Figure 1 shows an example of video stream processing
application with two operators A (which extracts features from
input video frames) and B (which recognizes objects from the
extracted features), with the output of A fed to B as input.
The arrival rates of data records for A and B are denoted
by λA and λB respectively, where λA depends on the input,
e.g., 24 frames per second, while λB depends on the output
rate of A, i.e., the number of features extracted in a unit
time. Inside each operator, an input is first buffered at an
input queue, i.e., qA and qB , before being processed by one
of the parallel processors, i.e., A1, . . . , An and B1, . . . , Bm.
Assuming the cloud provides identical processing units, each
processor in A (respectively in B) can process μA (μB) data
records in a unit of time. Clearly, an operator must have
sufficient processors to keep up with its input rate; otherwise,
inputs start to fill its input queue, resulting in increased latency
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Fig. 2. Example complex operator topology.

due to queueing delay, and eventually, errors when the queue
overflows. Since the arrival and processing rate for each
processor are uncontrollable, the main resource scaling issue
is to determine the number of processors for each operator,
i.e., n and m in our example.

A simple approach to scaling resources is to monitor the
workload in each operator and adjust the number of processors
accordingly; however, this approach is insufficient for multi-
operator applications. For instance, consider the case that at
some point, many recognizable objects appear in the video
stream. Although the number of frames per second in the input
λA remains stable, each frame now contains more extractable
features, requiring more work at operator A. Consequently,
μA will decrease, which subsequently overloads operator A,
causing inputs to wait longer in its queue qA and slowing
down output responses. If we naively add processors to
A to flush qA, operator A will suddenly produce a large
amount of outputs, leading to a burst in the input rate λB

and overload operator B. This problem is exacerbated when
the application involves a complex processing topology of
its operators. Figure 2 shows such an example with split
(A to B, C), join (C, D to E) and feedback loop (E to A).
Such topological features are key enablers for certain applica-
tions, e.g., feedback loop allows data reduction at the input
based on the most updated results as we will show in an
empirical example in Section V.

As we review in Section II, existing systems overlook
the problem of dynamic resource scaling. Consequently,
to meet the real-time constraint, they either require manual
tuning at runtime (which is infeasible for dynamic streams),
overprovisioning resources to operators (which wastes
resources), or load shedding (which leads to incorrect results).
Motivated by this, we design and implement DRS, a dynamic
resource scaling framework that applies to general operator-
based stream data analytics systems and allows operators to
form an arbitrary topology, possibly with splits, joins and
loops as shown in Figure 2. In particular, the support for loops
is crucial for applications involving iterations. Meanwhile,
from a semantics point of view, allowing arbitrary topologies is
more general than the two-step MapUpdate in Muppet [1] and
the DAG model in TimeStream [2]. Our main contributions
include effective and efficient solutions to three fundamental
problems in dynamic resource scaling: (i) how much resources
are needed, (ii) where to best place the allocated resources to
minimize average response time, and (iii) how to implement
resource auto-scaling in a real system with minimal overhead.
In particular, our solutions to the first two problems are based
on the theory of extended Jackson networks, which provides
an educated estimate of system performance.

The rest of the paper is organized as follows. Section II
surveys related work. Section III presents our performance
model and optimization algorithm. Section IV describes the

system design and implementation of DRS. Section V contains
an extensive set of experiments with real data. Section VI
concludes with directions for future work.

II. RELATED WORK

A. Resource Scaling in Cloud Systems

A cloud consists of a massive number of interconnected
commodity servers. A key feature of the cloud is that its
resources, such as CPU cores, memory, disk space and network
bandwidth can be provisioned to applications on demand.
In fact, most cloud infrastructure providers today offer pay-
as-you-go options for resource usage. Hence, a fundamental
requirement for a system to effectively use the cloud is
elasticity, meaning that the system must be able to dynamically
allocate and release cloud resources based on the current
workload. Many traditional parallel and distributed systems,
however, assume a fixed amount of resources available before-
hand, rendering them unsuitable to be applied in a cloud
platform. As a result, many novel elastic cloud-based para-
digms and systems have emerged in the past decade.

The first wave of cloud-based systems were built for running
a batch of (often slow) jobs offline. Notably, MapReduce [3]
is a batch processing framework that hides the complexity of
the cloud infrastructure, and exposes a simple programming
interface to users consisting of two functions: map (e.g., for
data filtering and transformation) and reduce (for aggregation
and join). A plethora of MapReduce systems, improvements,
techniques, and optimizations have been proposed in recent
years, and we refer the reader to a comprehensive survey [4].

Resource scheduling has been a central problem in
Map-Reduce like systems, and a plethora of schedulers have
been developed and used in production, e.g., Fair Sched-
uler [5], Capacity Schedular [6]. Since tasks running on nodes
without relevant data incur costly network transmissions, delay
scheduling [7] reduces such non-local tasks by forcing nodes
to wait until either a local task appears, or a specified period
has passed. These scheduling strategies, however, do not
apply to our problem, because they are designed for offline,
batch processing of (semi-) static data, where the goal is
to minimize total job completion time. Another direction
investigates task/job scheduling in fork-join process network
with task synchronization constraints [8], where queuing net-
work models are applied for finding the optimal scheduling
policy. Our work focuses on the optimal resource allocation of
processors to individual operators where the service capacity
of each processor is inseparable and pre-determined.

Recently, much attention has been shifted to real-time
interactive systems for big data analytics, such as Dremel [9],
Presto [10], OceanRT [11], [12], C-Cube [13], and newer
versions of Hive [14]. Such systems deal with static rather than
streaming data; meanwhile, the term “real-time” has a different
meaning that each query is executed quickly enough so that the
user can wait online for its results. Hence, resource scheduling
in these systems resembles offline systems and their techniques
do not apply to our problem for similar reasons.

Finally, there exist generic scheduling solutions for provi-
sioning to multiple applications competing for cloud resources.
Systems such as Mesos [15], YARN [16] are prominent
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examples. Abacus [17] optimizes total utility by allocating
resources via a truth-revealing auction. These methods gen-
erally assume that an application already knows the amount
of resources it needs, and how to distribute these resources
internally, which are the problems solved in this paper.
Hence, they can be used in combination with the proposed
solution.

B. Traditional Stream Data Processing Systems

Stream processing has been an important research topic in
both academia and industry. Earlier work focuses on stream
data analytics systems in a centralized setting, which resem-
bles the traditional, centralized database management systems.
For instance, STREAM [18] establishes formal semantics
for queries over streams [19], and proposes efficient query
processing algorithms, e.g., [20]. Similar systems include
Aurora [21], Gigascope [22], TelegraphCQ [23], and System
S [24]. Scheduling in such centralized systems means decid-
ing the best order of operators to execute (by the central
processor), e.g., in order to minimize memory consump-
tion [25], [26]. Hence, scheduling strategies in these systems
do not apply to our cloud-based setting, where operators
are executed by multiple nodes in parallel, and computa-
tional resources are dynamically provisioned on demand.
Stream systems built for traditional parallel settings, notably
Borealis [27], also differ from cloud-based stream data ana-
lytics systems in that the former assume that a fixed amount
of computational resources available beforehand, rather than
dynamically allocated.

C. Cloud-Based Stream Processing

There are two general methodologies for processing streams
in a cloud: using an operator-based stream data analytics
systems, and discretizing stream inputs into mini-batches [28].
The former derives from traditional stream data processing,
whereas the latter reduces stream processing to batch
execution. In general, mini-batch systems are optimized for
throughput, at the expense of increased query response time,
since each input must wait until a full batch is formed. While it
is possible to minimize this extra latency by having extremely
small batches, doing so would lead to high overhead, defeat-
ing the purpose. We focus on operator-based stream data
analytics systems since our target applications have real-time
constraints, in which response time is key.

Popular open source operator-based stream data analytics
systems include Storm [29], Heron [30] and S4 [31]. Their
main difference is that Storm and Heron guarantee the correct-
ness of results (through the Trident component), while S4 does
not. All the systems rely on manual configurations for resource
scheduling. Hence, to avoid slow responses due to operator
overloading, the user has to either overprovision resources to
every operator, which is wasteful, or continuously tuning the
system, which is infeasible for dynamic streams.

Many research prototypes of operator-based stream data
analytics systems are proposed, such as TimeStream [2], which
features efficient fault recovery, and Samza [32]. None of these
systems, however, addresses the resource scaling problem.

TABLE I

TABLE OF NOTATION

In the following we present DRS, an effective resource sched-
uler for cloud-based stream data analytics systems.

III. DYNAMIC RESOURCE SCALING

We focus on stream analytics applications, which are usually
memory-based and computation intensive. For such applica-
tions, processors are the main type of resource, each of which
contains a CPU (or one of its cores) and certain amount
of RAM. Disk space is not critical as streaming inputs are
computed on-the-fly. The goal of DRS is to fully process each
input of the application in real time. Specifically, an input
tuple to the application, e.g., a video frame in Figure 1, may
lead to multiple intermediate results, e.g., features extracted
by operator A and objects recognized by operator B. We say
an input tuple t is fully processed, if and only if every
intermediate result derived from t has been processed by its
corresponding operator. We use the term total sojourn time
to refer to the duration from t first arrives at the system
till t is fully processed. Our goal is twofold: (i) to minimize
the expected total sojourn time of each input t, when the
total number of available processors, denoted by Kmax, are
specified by users; or (ii) to minimize the total number of
processors while ensuring that the expected total sojourn time
is no more than a user-specified duration, denoted by Tmax.
Table I summarizes the frequently used notation in the paper.

A. Performance Model

Given an application’s operator topology, e.g., the one
in Figure 2, the existing resource allocation and the char-
acteristics of streaming data, the DRS performance model
estimates the average total sojourn time of an input of the
application. For the ease of presentation, we assume that all
processors in the cloud have identical computational power.
Nevertheless, the proposed models and algorithms can also
support settings with heterogeneous processors, and we will
explain how this can be done whenever necessary. Meanwhile,
we assume that load balancing is achieved in every operator,
i.e., each processor inside the same operator performs roughly
equal amount of work. How to achieve load balancing is an
orthogonal topic under active research [33]–[35]. Under these
assumptions, the processing speed of an operator depends
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mainly on the number of processors, and therefore, the existing
resource allocation in the system is the number of processors
assigned to each operator. Formally, we use N to denote the
number of operators of an application and a resource allocation
solution is represented by a vector k = (k1, k2, . . . , kN ),
where ki(1 ≤ i ≤ N) corresponds to the number of processors
allocated to operator i.

Regarding the characteristics of data, the important variables
include the rate at which tuples arrive at each operator, and
how fast the tuples can be processed by one processor. Notice
that the inter-arrival and processing (or service) times of the
data tuples are random and our model can handle fluctuations
in arrival rates and processing rates; however, we do assume
that the system remains in a relatively steady state during
the short time-span that DRS performs resource scaling. This
means that the instantaneous tuple arrival rate and processing
time at each operator remains stable, and we obtain these
quantities through the measurement module of the system,
described in Section IV. Specifically, for operator i, we use
λi to denote the arrival rate of its inputs, and μi to denote
the processing rate of each of its processors. For instance,
if ki = 3, λi = 10 and μi = 4, on average 10 tuples
arrive at operator i per unit time, and each of its 3 processors
processes 4 tuples per unit time. For operators with multiple
input streams, e.g., join operators, λi is the aggregate arrival
rate of all its input streams, and μi is the average processing
rate of the operator, regardless of where the tuple comes from.
In addition, we denote the external arrival rate of inputs that
flow into the application’s operator topology by λ0. When
there are clear “source” operators in the topology, λ0 is simply
the total arrival rates of these sources. In general, however,
there may not be a simple relationship between λ0 and λis.
For the example in Figure 2, λ0 is the arrival rate of tuples
that arrive (from outside the system) at operator A; the input
arrival rate λA for A on the other hand is the sum of λ0

and the arrival rate of A’s other input stream, produced by
operator E.

We use random variable T to denote the total sojourn
time of an input tuple to the application. Our goal is to
estimate E[T ], i.e., the expected value of T . The basic idea is
to apply the theory and established results of open queueing
networks (OQNs). In an OQN, the total sojourn time of an
input tuple t is computed by summing up its service times,
i.e., total time spent on processing t and intermediate results
derived from t, and queueing delays, i.e., total time that t
and its derived tuples wait in the operators’ queues. The
challenge, however, is that there are numerous OQN models
in the queuing literature, and selecting an appropriate one
is non-trivial. On the one hand, complex queueing network
models generally do not have known solutions, and even
among the ones that do, most have only numerical solutions
rather than closed-form analytical ones, which makes effective
optimization hard. On the other hand, an overly simplified
model may rely on strong assumptions that do not hold in our
setting.

After comparing various options and testing them through
experiments, we chose to build our model based on the Jackson
networks (M/M/k OQNs) [36], [37], which not only enable
effective analysis of each individual operator, but also help

aggregate these analyses to estimate E[T ]. In addition, our
model provides an analytical solution and efficient optimiza-
tions, and has only mild limitations, which will be discussed
shortly. We use random variable Ti to denote the sojourn time
of an input at operator i, representing the time between its
arrival at this operator till it is fully processed. In a steady state,
the average sojourn time E[Ti] is a function of the number
of allocated processes ki and consists of two parts: (i) the
expected processing time which is equal to 1/μi and (ii) the
expected queuing delay, denoted by E[Qi](M/M/ki), i.e.,

E[Ti](ki) = E[Qi](M/M/ki) +
1
μi

. (1)

By applying the Erlang’s delay formula [38], the expected
queuing delay of a M/M/k service node can be calculated
by

E[Qi](M/M/ki) =

⎧
⎨

⎩

π0(kiρi)ki

ki!(1 − ρi)2μiki
forρi < 1;

+∞ forρi ≥ 1,

(2)

where ρi = λi

kiμi
defines the utilization of operator i and π0

is a normalization term, given by:

π0 =

[
ki−1∑

l=0

(kiρi)l

l!
+

(kiρi)ki

ki!(1− ρi)

]−1

. (3)

Equation (2) intuitively shows that because tuples arrive at
a rate λi and each processor processes them at a rate μi, when
ρi ≥ 1, the processors cannot keep up with incoming tuples
and the number of tuples in the operator’s queues increases
with time, leading to infinite queuing delays. Conversely, when
ρi < 1, tuples are expected to be handled faster than they
arrive. However, due to the randomness in the inter-arrival and
processing times, queues may still be built up temporarily.

Based on the theory of OQNs [36], [39], E[T ] of the entire
topology can be computed as a weighted sum of the E[Ti]s as

E[T ](k) = E[T ](k1, k2, . . . , kN ) =
1
λ0

N∑

i=1

λiE[Ti](ki). (4)

Discussion: Since the above described DRS performance
model relies on Jackson networks with M/M/k service nodes,
it inherits two limitations. First, the model implicitly assumes
that both the inter-arrival times of external tuples (that come
from outside the system) and the service times of the operators
are independently and identically distributed (iid) exponential
random variables. Second, Jackson network does not explicitly
model the pipelining between different operators, nor the split
of jobs [40]. Hence, our model may give an inaccurate esti-
mate of E[T ], when the inter-arrival or service time deviates
significantly from the expected exponential distribution, or
when pipelining or job splitting affects total processing time
considerably.

To alleviate the effects caused by the first limitation, we
can simply extend our performance model to the generalized
Jackson networks (GI/G/k OQNs) [36], where the tuple
arrival and processing are approximated by renewal processes
and each operator is modeled as a stochastically independent
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GI/G/k service node. By applying the parametric decompo-
sition approach developed by Whitt [41], for any operator i,
the expected sojourn time E[Ti] can be approximated as

E[Ti](ki) ≈
(

ai + si

2

)

E[Qi](M/M/ki) +
1
μi

, (5)

where E[Qi](M/M/ki) is defined in Equation (2) and ai

(resp. si) is the squared coefficient of variation or the vari-
ability of the tuples’ inter-arrival times (resp. processing
times), and is defined as the variance divided by the squared
mean of the inter-arrival times (resp. processing times) at
operator i [42].

According to Equation (5), the expected sojourn time of a
GI/G/k service node, of which both tuple inter-arrival times
and processing times are non-Markovian, is a straightforward
extension of that of an M/M/k service node in Equation (1),
with the second moment information, i.e., the squared coef-
ficient of variation of the inter-arrival times and processing
times, taken into consideration. It can be easily verified that
M/M/k is a special case of GI/G/k, where ai = si = 1 for
operator i. In the meantime, Equation (4) is general enough
that it can be applied directly for aggregating all the E[Ti]s of
GI/G/k service nodes to calculate E[T ].

Nevertheless, as will be shown in our experimental evalua-
tions, (i) the value of E[T ] predicted by the M/M/k OQNs
model is sufficiently accurate, when the underlying application
is computation intensive; (ii) even if the estimation deviates
from the measurement, it is still strongly correlated with the
exact value of E[T ], implying that DRS remains capable of
identifying the best resource allocation with the predicted
value; and (iii) for most cases, the extended GI/G/k OQNs
model shows very similar capability to the M/M/k OQNs
model in estimating E[T ] as well as identifying the optimal
resource allocation.

Our model does not explicitly consider networking costs due
to the fact that (i) recent research [43] on performance analysis
on data analytics frameworks has revealed that network is
often not the bottleneck, but CPU is; (ii) data centers today are
increasingly equipped next-generation networking hardware
that provide significantly higher bandwidth and lower latency,
such as 10G Ethernet [44] and InfiniBand [45], whose prices
have been dropping rapidly. In contrast, processor speed in
terms of CPU clock rate and RAM latency has stagnated in the
past few years. Hence, we consider CPU to be the bottleneck
of the system, not the network bandwidth; (iii) as the network
bandwidth increases rapidly, it brings more challenges and
higher costs in measuring the network delay, e.g., clock
synchronization among physical nodes can be expensive in
a real-time application, but very limited benefits according
to (i) and (ii). As will be shown in our experimental eval-
uations, even when network costs lead to deviations in the
estimation of E[T ] made by our model, they do not affect
the capability of DRS to identifying the optimal resource
allocation.

In the rest of the section, we first show how DRS
adjusts resources based on the M/M/k OQNs model, i.e.,
Equations (1)-(4), and then how the scaling algorithm can
easily adapt to the extended model based on GI/G/k OQNs.

B. Scaling Algorithm

In a nutshell, DRS (i) monitors the current performance of
the system (more details in Section IV), (ii) checks whether
the performance degrades (or is about to degrade) under real-
time constraints, or when the system can fulfill the constraints
with less resource, and (iii) reschedules resources when the
conditions of (ii) are triggered. The main challenge lies in (ii),
which needs to answer two questions: 1) how many processors
are needed to satisfy the real-time constraints, and 2) where
to place them in the operator topology. We first focus on the
latter question. Specifically, given a number (say, Kmax) of
processors, we are to find an optimal assignment of these
processors to the operators of an application that obtains the
minimum expected total sojourn time E[T ]. The optimization
problem can be mathematically formalized as follows:

min
k

E[T ](k)

s.t.
N∑

i=1

ki ≤ Kmax, ki is interger, i = 1, 2, . . . , N. (6)

A naive approach to solve the above problem is to view it
as an integer program and apply standard solvers. However,
existing integer programming solvers are prohibitively slow,
especially considering that DRS itself has to run in real time.
In the following we describe a greedy algorithm (presented as
Algorithm 1) to solve (6) based on the GI/G/k OQNs model.

The idea of the proposed algorithm is to start from the
smallest possible value of each ki (lines 1-3) and iteratively
add one processor to the operator that leads to the largest
decrease in E[T ] (lines 7-14). According to Equation (2), each
ki must be greater than λi/μi; otherwise, E[Ti](ki) becomes
infinitely large, leading to infinity on E[T ] as well.

Algorithm 1 AssignProcessors

Input: Kmax, λ0, {λi, i = 1, . . . , N}, {μi, i = 1, . . . , N},
{ai, i = 1, . . . , N}, {si, i = 1, . . . , N}.

Output: k = (k1, k2, . . . , kN )
1: for all i← 1, . . . , N do
2: ki ←

⌊
λi

μi

⌋
+ 1 /* Initialize each ki */

3: end for
4: if

∑N
i=1 ki > Kmax then

5: throw an exception that the number of processors are not
sufficient for the application.

6: end if
7: while

∑N
i=1 ki ≤ Kmax do

8: for all i← 1, . . . , N do
9: δi ← λi ·

[
E[Ti](ki)− E[Ti](ki + 1)

]

10: end for
11: /* find the operator with the largest marginal benefit. */
12: j ← argmaxi δi

13: kj ← kj + 1
14: end while
15: return k = (k1, k2, . . . , kN )

Before we come to the theorems stating the effectiveness of
our proposed algorithms to solving the optimization problems,
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we state the following assumption widely adopted by previous
works [36], [42].

Assumption 1: The squared coefficient of variations (scvs)
ai and si for all i = 1, . . . , N are independent of the number
of processors ki assigned to each operator i.

Theorem 1: Under Assumption 1, Algorithm 1 always
returns one of the optimal solutions of (6).

Proof: First of all, by applying the marginal analysis
technique, E[Qi](M/M/ki) is proved to be a decreasing and
convex function in ki, i.e., the number of processors assigned
to operator i [46].

Secondly, based on Assumption 1, we have E[Ti](ki) of
Equation (5) being a decreasing and convex function in ki,
too. This implies that the marginal benefit for increasing
ki drops monotonously as ki becomes larger. Formally, for
all k′

i > ki, we have

E[Ti](ki)− E[Ti](ki + 1) > E[Ti](k′
i)− E[Ti](k′

i + 1). (7)

Finally, let k be the output of AssignProcessors shown
in Algorithm 1, and k∗ be an optimal assignment that mini-
mizes E[T ]. Suppose k �= k∗, there must exist two operators
x and y satisfying that k∗

x > kx and k∗
y < ky . According

to the facts that (i) AssignProcessors always increments
the number of processors for the operators with the highest
marginal benefit (lines 8-13); and (ii) the diminishing marginal
benefit property in Inequality (7), we derive the following
inequality:

λy

[
E[Ty](k∗

y)− E[Ty](k∗
y + 1)

]

≥ λx

[
E[Tx](k∗

x − 1)− E[Tx](k∗
x)

]

In other words, in k∗, taking one processor away from operator
x and assigning it to operator y leads to a value of E[T ] that is
no worse than before. This can be done repeatedly to gradually
change k∗ to k, without increasing E[T ]. Hence, E[T ](k) ≤
E[T ](k∗). Since k∗ is optimal, k must be optimal as well. �

As a corollary, by setting ai = si = 1, i = 1, . . . , N ,
Algorithm 1 and Theorem 1 can be directly applied to the
basic M/M/k OQNs model [37], i.e., E[Ti] in Equation (1).

Next, we focus on the question about how to determine the
minimum number of processors that are expected to achieve
real-time processing, i.e., the expected total sojourn time E[T ]
is no larger than a user-defined threshold Tmax. This can be
modeled by the following optimization problem.

min
k

N∑

i=1

ki,

s.t. E[T ](k) ≤ Tmax, ki is interger, i = 1, 2, . . . , N. (8)

Similar to (6), we can solve (8) using a greedy strategy
as shown in the following Algorithm 2. Specifically, we start
by initializing each ki with the minimal resource require-
ment (lines 2-6). It is necessary to check the feasibility of
user-configured Tmax by comparing it with the lower bound
(lines 7-9). Subsequently, we repeatedly add one processor
and obtain the optimal processor assignments by calling
Algorithm 1, until E[T ] is no larger than Tmax (lines 10-13).

Theorem 2: Under Assumption 1, Algorithm 2 always
returns the optimal solution of (8).

Algorithm 2 MinProcessors

Input: Tmax, λ0, {λi, i = 1, . . . , N}, {μi, i = 1, . . . , N},
{ai, i = 1, . . . , N}, {si, i = 1, . . . , N}.

Output: k = (k1, k2, . . . , kN )
1: K ← 0, TL ← 0
2: for all i← 1, . . . , N do
3: ki ←

⌊
λi

μi

⌋
+ 1 /* Initialize each ki */

4: K ← K + ki

5: TL ← TL + 1
μi

6: end for
7: if TL > Tmax then
8: throw an exception that Tmax is not achievable.
9: end if

10: while E[T ](k) > Tmax do
11: K ← K + 1
12: k← AssignProcessors(K, λ0, {λi}, {μi}, {ai}, {si})
13: end while
14: return k = (k1, k2, . . . , kN )

Proof: Let k = (k1, k2, . . . , kN ) be the output of
MinProcessors and K =

∑N
i=1 ki be the total number

of processors of the assignment. According to Algorithm 2,
line 12, we use k′ = (k′

1, k
′
2, . . . , k

′
N ) to denote

the output of execution on AssignProcessor(K − 1,
λ0, {λi}, {μi}, {ai}, {si}), resulting in (i)

∑N
i=1 k′

i = K − 1
and (ii) E[T ](k) ≤ Tmax < E[T ](k′).

We assume the optimal K∗ < K . Without loss of generality,
we consider K∗ = K − 1 and its corresponding assign-
ment k∗ = (k∗

1 , k∗
2 , . . . , k∗

N ) satisfying that (i)
∑N

i=1 k∗
i =

K∗ = K − 1 and (ii) E[T ](k∗) ≤ Tmax. However, this
contradicts with Theorem 1 that k′ = (k′

1, k
′
2, . . . , k

′
N ) is the

optimal solution to Program 6 with inputs Kmax = K − 1,
λ0, {λi}, {μi}, {ai}, {si}. �

In practice, the solution of (8) may not provide us with the
precise amount of resources needed for meeting the real-time
constraints all the time for two reasons. First, the total sojourn
time can be different for every input, and E[T ] is merely a
measure of its average value. Second, the performance model
described in Section III-A outputs only an estimate of E[T ],
rather than its exact value. To address this problem, DRS starts
with the number of processors suggested by the solution of (8),
monitors the actual mean sojourn time E[T̂ ], and continuously
fine-tune the number of processors based on the measured
value of E[T̂ ]. In next section, we discuss the system design
and implementation issues with DRS.

IV. SYSTEM DESIGN

An overview of the system architecture is presented in
Figure 3, which generally consists of two layers, the DRS layer
and the CSP (cloud-based streaming processing) layer. Specif-
ically, DRS layer is responsible for performance measurement,
resource scaling and resource allocation control, while the CSP
layer consists of the primitive streaming processing logic, e.g.
running instances of Storm [29], Heron [30] and S4 [31],
and the cloud-based resource pool service, e.g. Mesos [15],
Hadoop YARN [16] and Amazon EC2.
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Fig. 3. The architecture overview.

We will focus on the major functionalities of the DRS layer
and its connection to the CSP layer, as implementation of
the CSP layer mainly reuses existing open source softwares
or external commercial services. While the core of the DRS
layer is responsible for optimizing the resource scaling based
on the performance model developed in the previous section,
its implementation is not a straightforward task. Given the
heterogeneous underlying infrastructure and the complicated
streaming processing applications running on the CSP layer,
it is crucial to collect the accurate metrics from the infrastruc-
ture, aggregate the statistics, make online decisions and control
the resource allocation in an efficient manner.

To seamlessly combine the optimization model and the
concrete streaming processing system, we build a number of
independent functional modules, which bridge the gap between
the physical infrastructure and abstract performance model.
As shown in Figure 3, on the input side of the optimizer
component, we have measurer module and configuration
reader module, which generate the statistics needed by the
optimizer based on the data/control flow from CSP layer.
On the output end of the workflow diagram, the scheduler
module and resource negotiator module transform the deci-
sions of the optimizer into executable commands for different
streaming processing platforms and resource pools. In the
following, we provide the technical details and key features
of these modules.

A. Measurer and Configuration Reader Modules

The measurer module is mainly responsible for the measure-
ment on the CSP layer and the pre-processing of the metrics
before sending them to the optimizer component. Recall from
Algorithms 1 and 2 that for each operator i of a running
application, it is essential to collect two local metrics of the
operator: the arrival rate, denoted by λ̂i, and the service rate,
denoted by μ̂i. In addition, the optimizer component also
needs certain global metrics for its optimization algorithm,
i.e., metrics related to individual tuples and multiple operators
such as the external arrival rate of tuples, denoted by λ̂0, and
the average total sojourn time, denoted by E[T̂ ] of the tuples.
Notice that the performance model derived in Section III-B
allows the system to estimate E[T ]. We, however, believe that
direct measurements from the infrastructure help reduce errors
between the estimated and actual values.

There exist two major technical challenges to implement the
measurer module in the DRS layer. First, the operators and the
parallel instances within the operators might be running on

different physical machines during online stream processing.
Therefore, the measurement must be conducted collaboratively
in a distributed environment. Second, it is also important for
the measurer module to minimize the overhead and main-
tain the high availability of the streaming processing service
itself.

To tackle the challenges listed above, the measurer module
in our system is designed as an independent system operator,
mostly invisible to the system user and programmer. To collect
the local metrics, a group of optional measurement logics are
injected into the executables on each instance of the operators,
such that specified local metrics are forcefully collected and
kept in the memory of the distributed nodes. A pull-based
mechanism is employed to control the data flow from the oper-
ators of the topology to the measurement operator. To limit the
overhead of distributed metric collection, a bi-layer sampling
strategy is applied to the system. Specifically, each instance
of the operators records the metric of a tuple every Nm local
input tuples, while the centralized measurement operator pulls
updates from the other operators every Tm seconds.

To collect the global metric of the external arrive rate
of tuples coming into the system, the measurement opera-
tor tracks the processing tree of the tuple, using existing
techniques, e.g. acknowledgment mechanism. Therefore, the
measurement operator receives notifications from the underly-
ing infrastructure about the completion of the processing trees
of the tuples, and calculates the global metric based on the
notification times.

After collecting the raw measurements, the system still
needs to apply pre-processing operations to eliminate the
effects of noises, message loss and outliers. These operations
include result aggregation at the operator level and results
smoothing. Result aggregation is crucial because the metrics
defined in our performance model are at the operator level
rather than the instance level, which may only represent
some proportion and underestimate the operator level metrics.
Results smoothing helps reduce the effects of noise and
improve stability of the system. We implemented two options
of smoothness operations. We denote d(n) as the measurement
results of the nth interval collected and aggregated by the
controller, and denote D(n) as the smoothed results after the
nth interval. The first smoothness option is α-weighed aver-
aging, in which we update D(n) = αD(n−1)+(1−α)d(n),
with α ∈ [0, 1) as a tunable parameter controlling the fading
rate of the outdated metrics. The second smoothness option
is window-based averaging, in which we update D(n) =
1
w

∑n
j=n−w+1 d(j), with w as the windows size parameter.

We will discuss experimental results based on the window-
based option in the next section.

The configuration reader module is designed to be a general
interface for managing a data structure containing the configu-
ration parameters provided by either the users or the CSP layer.
We list part of the parameters: (i) the type of the optimization
problem, i.e., (6) or (8); (ii) the corresponding parameter
Kmax, for Algorithm 1; Tmin and Tmax for Algorithm 2; and
Tra in the optimizer; (iii) for the measurer, e.g., sampling rate
Nm, trigger interval Tm and α or w for the smooth processing;
(iv) for the scheduler, e.g., the current running allocation and
the re-allocation cost.
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B. Scheduler and Negotiator Modules
Based on user requirements, the optimizer returns two types

of optimization results, which minimize the latency given fixed
amount of available resource and minimize the amount of
computation resource given the maximal allowable latency.
Since these results only indicate the amount of resources
assigned to the particular operators, to execute the results, the
system still needs to determine a concrete mapping between
the available resources and the operators, which is handled by
the scheduler module and resource negotiator module.

In the implementation of DRS, we deployed two schedulers
corresponding to the two different optimization problems. For
optimization (6), the scheduler runs Algorithm 1 on a regular
basis, e.g., once per minute. In particular, assuming a user
configures the Kmax, if the number of processors assigned
to each operator of the application is different to the optimal
solution, the scheduler invokes the re-allocation procedure if
the time elapsed since the previous re-allocation event was
invoked exceeds a pre-defined threshold, denoted by Tra.

For optimization (8), the scheduler runs Algorithm 2 on a
regular basis, i.e., once per minute: (i) when it detects resource
shortage, i.e., the measured E[T̂ ] is larger than the user
configured Tmax, it triggers MinProcessors in Algorithm 2
to adding extra processors; or (ii) when it detects resource
overprovisioning, i.e., E[T̂ ] is below the user configured Tmin,
which is actually a critical point where users start to shift
their attention from tuple complete latency to the total resource
consumption, it triggers a similar procedure as the MinProces-
sors to removing existing processors; (iii) when the total
amount of resources in use is appropriate, but the assignment
of processors to each operator is different to the optimal,
it triggers the re-allocation procedure by applying the optimal
solution returned by AssignProcessors in Algorithm 1. Note
that the time between any two consecutive triggered events
must be greater than the user defined threshold Tra.

The rationale of controlling the frequency of triggering
re-allocation procedures through Tra is because the
re-allocation procedure inevitably incurs noticeable costs
in terms of total sojourn time, e.g., state migration. How
to optimize the re-allocation procedure so as to minimize
these costs [47] and when to trigger the re-allocation
procedure for balancing between the re-allocation costs and
the performance gain are interesting future extensions to the
design of the scheduler. Furthermore, in the long run the
optimal solutions of (6) and (8) may oscillate among a small
set of configurations, due to the periodic behaviors of stream
analytics applications, e.g., data arrival rate and characteristics
periodically changing with the time of each day. Thus, it is
possible to use machine learning based techniques to predict
the changing trends, which could further help the scheduler
module to achieve better performance. However, these future
directions of research are out of the scope of this paper.

The resource negotiator module works at a lower layer
than the scheduler module. When users submit new config-
urations on Kmax or Tmax either for saving budget or power
consumption, or raising the QoS service level, the currently
available physical processors, i.e., threads/CPU cores, might
be either insufficient or over-provisioned. At these moments,
the resource negotiator module will take the responsibility of

interacting with the lower level resource managers of cloud
platforms, e.g., Mesos [15] and Hadoop Yarn [16]. It is usually
required to implement a series of dedicated APIs defined
by the deployed managers. For example, one of the most
common APIs must be launching (resp. stopping) new (resp.
existing) virtual/physical computing nodes. It is sometimes
non-trivial to design and implement the resource negotiator
module because the interactions with resource mangers such
as Mesos [15] may involve a complicated bargaining process,
e.g., the final agreement on resource provision accepted by
both the requester and the provider might be worked out after
many rounds of negotiations. In consequence, how to design
and implement a smart resource negotiator becomes another
very interesting and important research problem which we
consider as future works. To simplify the implementation of
resource negotiator for DRS, we directly applied an exist-
ing open-source resource negotiator, called Storm-on-Yarn
(https://github.com/yahoo/storm-yarn/).

V. EMPIRICAL STUDIES

To test and demonstrate the effectiveness of the DRS
framework, we have implemented a prototype and integrated
it with Apache Storm [29]. Source codes and complied
executable JAR files are released in GitHub repository at
https://github.com/ADSC-Cloud/resa-drs/releases/.

As no available API was provided by Apache Storm
to measure the queue related metrics such as the arrival
rate to each operator, the implementation and integration of
DRS with Storm were quite complicated, because we had
to modify the source codes of the Storm core to add such
measurement logics. To further make our released DRS an
independent and pluggable tool, we proposed modifications
of the Storm core to the Apache Storm community (available
at https://github.com/apache/storm/pull/716/ ), which has been
accepted and merged into the master develop stream of the
Storm codebase, and is effective since Storm version 1.0.0.
The overview of the important concepts and architectural
aspects of Storm, and more detailed descriptions of how we
implemented the measurer, scheduler and resource negotiator
modules of DRS in Storm are provided in Appendix VI.

A. Test Applications

We implemented two real-time stream analytics applications
on top of Storm1: video logo detection (VLD) and frequent
pattern detection (FPD) from different application domains.
An application running on Storm is defined by a topology,
with vertices as user-defined operators containing computation
logics and edges as data flows between the operators. There
are two types of operators in Storm, spouts and bolts. Spouts
act as data sources, which are connected to external streaming
sources; bolts represent all other non-source operators. Each
operator contains one or more processors, called executors,
running on different computing nodes.

1) Logo Detection From a Video Stream: Given a set of
query logo images, the logo detection application identifies
these images from an input video stream. Although much work

1We have developed a couple of real-time stream analytics applications
based on Storm and published video demos at: http://www.resa-project.com/.
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Fig. 4. The topology of real-time video logo detection application.

Fig. 5. The topology of the stream frequent pattern detection application.

has been done to improve the accuracy and efficiency of VLD,
performing it in real time remains a major challenge, due to
its high computational complexity.

Figure 4 illustrates the topology of the real-time VLD
application, which is a chain of operators containing a spout,
a feature extractor, a feature matcher, and an aggregator.
The spout extracts frames from the raw video stream. The
output rate of frames may vary from time to time according
to the generation algorithm and the original video contents.
We employ scale-invariant feature transform (SIFT) [48]
algorithm to extract features from each frame, which is
time-consuming as it involves convolution operators over the
2-dimensional image space. Moreover, the number of resulting
SIFT features may vary dramatically on different frames,
causing significant variance on the computation overhead over
time. The feature matcher measures L2 distance between
its input SIFT features to those pre-generated logo features,
and outputs matching pairs with distance lower than a pre-
defined threshold. Finally, the aggregator judges whether a
logo appears in a video frame by aggregating all input match-
ing feature pairs, i.e., if the number of matched features in
a video frame exceeds a threshold, the logo is considered to
appear in the frame.

2) Frequent Pattern Detection over a Microblog Stream:
This application maintains the frequent patterns [49] over a
sliding window over a microblog stream from Twitter. For
each input sentence, we append an additional label “+/-”,
indicating it is entering/leaving the sliding window. Given
a set of input item groups in the sliding window and a
threshold, we define a maximal frequent pattern (MFP) to be
the itemset satisfying: (i) the number of item groups containing
this itemset, called its occurrence count, is above the threshold;
and (ii) the occurrence count of any of its superset is below the
threshold.

Figure 5 illustrates the corresponding operator topology
with two spouts, which generate tuples as itemsets enter/leave
the current processing window, respectively. The pattern
generator generates candidate patterns, i.e., itemsets. These
candidates include an exponential number of possible non-
empty combinations of items. Hence, its computation varies,
according to the number of items in recent transactions.
The detector maintains the state records containing (i) the
occurrence counts and (ii) MFP indicator, of all the candidate
itemsets. When the MFP indicator of an itemset changes from
False to True, the detector outputs a notification to the reporter,
and also to itself through the loop back link. Since (i) each
processor in the detector maintains only a portion of the state

records; and (ii) a state change can affect the states of other
itemsets stored at a different processor, the loop ensures that
the state change notifications be sent to all the instances.
Finally, the reporter writes the updates of the detection results
to an HDFS file.

B. Experiment Setup

The experiments were run on a cluster of 6 Ubuntu Linux
machines interconnected by a LAN switch. Each machine is
equipped with an Intel quad-core CPU 3.4GHz and 8GB of
RAM. Following common configurations of Storm, we allo-
cated one machine to host the Nimbus and Zookeeper Server;
the remaining 5 machines host executors for the experimental
applications. We also configured each of these 5 machines
so that one machine can host at most 5 executors. The main
purpose of such configuration is to mitigate the interference
caused by other executors running on the same machine, and
the resource contention due to the over-allocation of executors
on a single machine. As a result, there are 25 executors in
total.

For both applications, namely video logo detection (VLD)
and frequent pattern detection (FPD), we allocated two execu-
tors as spouts, and one executor for DRS. The remaining
25− 3 = 22 executors are used as bolts, i.e., Kmax = 22. For
VLD, the input data are a series of videos clips of the soccer
games, and we selected 16 logos as the detection targets. The
frame rate simulates a typical Internet video experience, which
is uniformly distributed in the interval [1, 25] with a mean of
13 frames/second. For FPD, we use a real dataset contain-
ing 28,688,584 tweets from 2,168,939 users collected from
Oct. 2006 to Nov. 2009. We set the sliding window to 50,000
tweets, and simulated the arrival of tweets to the topology
following the Poisson process with an average arrival rate of
320 tweets per second.

C. Experimental Results

We have conducted four groups of experiments aiming to
(i) test the quality of the performance model; (ii) evaluate
the effectiveness of the resource scaling algorithms 1 and 2;
and (iii) investigate the running overhead of DRS. The experi-
mental results show that DRS is capable of detecting resource
shortage, overprovisioning, or sub-optimal allocation and mak-
ing quick and effective re-allocation with neglectable running
overheads.

1) Evaluations on the Quality of the Performance Model:
In this set of experiments, each of which lasts for 10 minutes,
we let Tra = +∞, i.e., the DRS runs passively by monitoring
the system performance and recommending new (if better)
resource allocations, but its scheduler module never triggers
any re-allocation procedure. Figure 6 shows the mean and
standard deviation of the total sojourn times under 6 different
allocations for each application. The x-axis (x1:x2:x3) denotes
an resource configuration (in a partial order of x1, x2, x3),
where x1, x2, x3 are the number of executors allocated to
the operators SIFT Feature Extractor, Feature matcher, and
Matching aggregator in Figure 4, or the Pattern generator,
detector, and reporter in Figure 5. The two configurations
with “∗”, i.e., (10:11:1) for VLD and (6:13:3) for FPD, are
the recommended allocations provided by the DRS.



FU et al.: DRS: AUTO-SCALING FOR REAL-TIME STREAM ANALYTICS 3347

Fig. 6. The mean and standard deviation of the total sojourn time under dif-
ferent resource configurations without re-allocation, where the configurations
with “∗” are the recommended allocations by the passively running DRS.

Fig. 7. Comparing average sojourn time estimated by the model and
measured in the experiment.

From Figure 6, we make the following observations. The
resource configurations (10:11:1) for VLD and (6:13:3) for
FPD achieve the best performance according to the measured
average sojourn time. This turns out to be consistent with
the recommendations provided by DRS, which validates the
accuracy and effectiveness of our performance model and
resource scaling algorithms. In particular, these two configu-
rations not only obtain the smallest average sojourn times, but
also the minimum standard deviation, leading to the smallest
performance oscillations. Different configurations, including
the five closest ones in terms of the L1 distance shown in the
figures, exhibit considerably worse performance. These results
demonstrate that it is not trivial to find the optimal resource
allocation especially when the application topology becomes
more complicated, e.g., having more than three bolt operators,
and hence reveal the importance and usefulness of DRS.

To take a closer look at how DRS provides resource config-
uration recommendations correctly, we show the relationship
between the measured average sojourn times and the estimated
average sojourn time derived by our performance model for
the six resource allocation configurations for both VLD and
FPD in Figure 7.

In Figure 7, the x-axis represents the estimated average
sojourn time, the y-axis represents the measured average
sojourn time and each point represents one experiment ini-
tialized by a particular allocation configuration. As shown
in Figure 7, the points of both VLD and FPD applications
are positively correlated, which evidences that the perfor-
mance model is capable of suggesting the best resource
allocation configuration. Moreover, the performance model
outputs accurate estimates for VLD; though, with some slight
underestimation comparing to the measured values. It is worth
noting that the estimates are quite accurate even though the
underlying conditions for the Jackson network theory are not
satisfied, i.e., the frame rate is uniformly distributed rather
than exponentially distributed as required by the Jackson
OQNs. Furthermore, the operator input queues do not follow
strict FIFO rule; instead, tuples are hashed to processors
and different operators are also run in parallel, leading to

Fig. 8. The average sojourn times of three initial allocations for both VLD
and FPD applications, where Kmax = 22 and Tra = 14 minutes.

pipelining. For FPD, the estimated sojourn times show larger
deviations than that of the measured ones. This is mainly
because the model does not consider network transmission
cost, which takes a dominant portion of the total query latency
in this particular application. In other words, the FPD is de
facto the type of data intensive rather than the computation
intensive application that we focus on. Nevertheless, our model
still correctly indicates the relative performance order of the
resource allocation configurations. Since the estimates are
strongly correlated with the true values, polynomial regres-
sions can be used to make accurate predictions on the true
latency values given the estimated ones.

2) Evaluations on the Optimization (6) and Algorithm 1:
In this set of experiments, each of which lasts for 27 minutes,
we let Tra = 14 minutes, i.e., throughout the whole experi-
ment, DRS invokes the re-allocation procedure at most once
when it detects sub-optimal resource allocations given the
maximal number of available executors Kmax = 22. In this
way, we are able to have a clear view of the performance
in terms of the average sojourn time across the re-allocation
events.

As shown in Figure 8, x-axis represents the experiment time
and y-axis represents the measured sojourn time averaged over
each minute. For both VLD and FPD applications, three exper-
iments with different initial allocation configurations, each of
which is represented by a curve, were conducted. In particular,
the curve marked by “o” represents the experiment initialized
with the optimal allocation while the remaining two curves,
marked by “+” and “x” represent the experiment initialized
with sub-optimal allocations. We observe from Figure 8 that
for both applications, the re-allocation procedure was triggered
at the 14th minute, i.e., the earliest possible time, for the
two experiments started with sub-optimal allocations, quickly
responding to the less promising resource scheduling plan.
After the re-allocation, all three experiments were scheduled
with the unique optimal solution. This observation is supported
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Fig. 9. Average sojourn time and resource re-allocation events of the VLD application under long-term (left) and short-term (right) changes in video input
rate, where Tra = w minutes, Tmax = 1000 ms and Tmin = 450 ms. (a) Long-term change in video input rate. (b) Short-term change in video input rate.

by two facts. First, after the 14th minute, all the three curves
have similar average sojourn times and performance trends.
Especially for the two curves with re-allocation triggered, they
show a clear decrease in the average sojourn time. Second, the
plans kept in the log files further verify this observation.

It is worth noting that the built-in re-allocation procedure
provided by Storm leads to serious performance degradation,
i.e, the average sojourn time increases dramatically and lasts
for 1-2 minutes. This is not affordable for real-time applica-
tions; therefore, we have developed our improved version [50]
of re-allocation procedure for these experiments. As shown in
the configurations (8:12:2) and (11:9:2) of VLD and (8:12:2)
and (7:13:2) of FPD in Figure 8, our improved version of
re-allocation procedure led to remarkably low cost, i.e., a
neglectable increment in the average sojourn time within
the 14th minute only. Besides, it only takes a few seconds,
comparing to the 1-2 minutes taken by Storm’s default version.

3) Evaluations on the Optimization (8) and Algorithm 2:
We investigate how DRS adjusts resources when it detects
resource shortage/overprovisioning. Four experiments on the
VLD application are conducted under dynamic video arrival
rates, i.e., two for long-term and two for short-term changes,
and the experimental results are presented in Figure 9.

The top sub-figures of Figure 9 illustrate two changing
patterns of external video input rates. Three discrete values,
i.e., 6, 12 and 18 fps are used for simulating the 200%
and 300% increment/decrement in the processing workloads.
We set the threshold Tra = w, where the middle and
bottom sub-figures plot the instantaneous tuple sojourn times
averaged in each minute for w = 6 and w = 3, respectively.
In addition, each solid vertical line represents a DRS triggered
event of resource re-allocation. For example, the left most
vertical line in the middle subplot of Figure 9(a) shows that
DRS has triggered the re-allocation procedure at the 12th
minute. Consequently, the number of executors assigned to
the SIFT Feature Extractor, Feature matcher and Matching
aggregator of the VLD application, denoted by the triple
(x1:x2:x3), changes from (3:5:1) to (4:6:1), indicating that
a resource shortage situation is detected by DRS and two
extra executors are added during the re-allocation procedure.

Based on the results shown in Figure 9, we make the following
observations:

(i) DRS is capable of detecting resource shortage or over-
provisioning and making effective resource adjustment. For
example, the three re-allocation events (vertical lines) in the
middle subplot in Figure 9(a) exactly correspond to the three
changes in the video input rate at the 6th, 21st and 34th minute,
respectively. In particular, DRS detects resource shortage for
the 1st (a 200% increment) and 3rd (a 300% increment)
changes of input rate, and triggers re-allocation for adding
extra executors, while for the 2nd (a 200% decrement) change
in the input rate, resource overprovisioning is detected and
existing executors are, in consequence, removed by DRS.

(ii) By comparing the two curves in the middle (w = 6)
and bottom (w = 3) subplots in Figure 9(a), we observe
that a small value in w, i.e., the window size of smoothing
measurement results, helps DRS to take quicker responses to
the dynamic changes in the video input rate. For example, the
time between the change in the input rate and the time when
DRS triggers re-allocation equals 3 minutes for both the 1st
and 2nd events under w = 3, whereas the corresponding times
are 7 and 6 minutes, respectively, under w = 6. However, a
large value in w, nonetheless, reduces the probability that DRS
triggers an unnecessary re-allocation, and therefore, reduces
re-allocation costs. An example can be found in Figure 9(b),
where from the 6th to 9th minute, the video frames arrive at
12 fps (200% of the base rate). In the middle subplot, due
to the large w, the measured sojourn time, after smoothed
by a 6-minute window, stays constantly below the threshold
Tmax; and therefore, no re-allocation is triggered. The bottom
subplot of Figure 9(b), on the contrary, shows that under
w = 3, two re-allocation events at the 9th and 15th minute
are triggered. In summary, the window-size w provides a
tradeoff between quick response and system stability. In real
implementation, a sufficiently large w is often needed to ensure
the system stability and save costs by lowering the probability
of triggering unnecessary re-allocations.

(iii) Similar to the observations made in Figure 8, the costs
incurred by our re-allocation procedure in all the experiments
shown in Figure 9 are much lower than that of Storm’s default.
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TABLE II

COMPUTATION OVERHEADS IN MILLISECONDS UNDER DIFFERENT Kmax

However, the overhead of adding executors is considerable
higher than that of removing existing executors. For exam-
ple, the middle subplot of Figure 9(a) shows overheads of
more than 3000 (ms) increase in the average sojourn time
in both the 12th and 35th minute, triggered by DRS under
resource shortage; whereas, an increase of about 600 (ms)
incurred during the 2nd re-allocation event at the 26th minute
under overprovisioned resources. This is mainly due to the
different actions taken during the re-allocation procedure.
In the resource shortage case, new machines are initialized
and added to the running topology, and during this period the
whole running application has to be suspended; whereas in
the resource overprovision case, the termination and removal
of the working machines can be carried out simultaneously
without affecting the running application, hence no substantial
impacts on the average sojourn time.

4) The Running Overhead of the DRS: To evaluate the
computation overhead of the overall DRS layer, we report
the CPU time spent by the whole DRS module, including
the processing on measurement results and calculating the
optimal allocation. In this experiment, we only test on the
VLD topology composed of three bolt operators with fixed
parameters λ0, λi and μi, i = 1, 2, 3. We try different Kmax,
i.e., total number of executors for all operators. For each value
of Kmax, we run the procedure 100,000 times and report the
average running time of the whole DRS layer. The results are
listed in Table II, with Scaling as the allocation computation
and Measurement as the metric processing computation.

Generally speaking, the computation done by DRS is almost
neglectable, with overhead less than milliseconds in most
of the cases. Moreover, the results are consistent with our
intuition that the computation consumption is linear in Kmax,
as analyzed in Algorithm 1. The time consumed on processing
the measurement results is irrelevant to Kmax. In fact, it is
affected by the total number of tasks of the topology, as we
will discuss in Appendix VI that this number is kept immutable
when the topology is running.

D. DRS With the Extended Model Based on GI/G/k OQNs

According to our log files, in most cases, the values of
E[Ti]s and E[T ] predicted by the extended model based on
GI/G/k OQNs are close to those predicted by the basic model
based on M/M/k OQNs. In consequence, the suggested
optimal allocations by both models are exactly the same too.
In terms of the accuracy of estimation on the values of
E[Ti]s and E[T ], by definition, the extended model (based
on GI/G/k) shall outperform the basic model (based on
M/M/k) when the standard deviations of inter-arrival times
and tuple processing times deviate from the corresponding
means noticeably, since when they are equal or close, we have
ai = si = 1 and the extended model falls back into the basic
one.

Fig. 10. Illustration of special cases where the extended model based on
GI/G/k OQNs outperforms the basic model based on M/M/k OQNs.
There are two additional experiments on VLD application with Tra = +∞.
(a) Kmax = 7; λ0 = 5. (b) Kmax = 7; λ0 = 6

Plenty of prior studies on optimizing manufacturing
operations showed that in most realistic cases the standard
deviations of inter-arrival times and job process times are
much smaller than the corresponding means [36], [42], [51].
This is also true for many computation intensive stream data
analytics applications. According to Equation (5), when ai < 1
and/or si < 1, the values of E[Ti]s and E[T ] calculated by
the extended model are smaller than by the basic model,
because “less” stochastic arrival and service processes, i.e.,
smaller ai and si, should result in smaller sojourn times.
As we mentioned in Section III-A and evidenced by the
experimental results in Figure 7, the basic model tends to
underestimate the true E[T ] because the network overhead is
not included. Consequently, the extended model produces even
poorer (smaller) estimates on E[T ] for these cases as expected.

Nevertheless, there exist certain cases where the extended
model based on GI/G/k OQNs outperforms the basic model.
We take the VLD application illustrated in Figure 4 as an
example. The tuple arrival and service processes of its two
computation intensive operators, i.e., SIFT Feature Extractor
and Feature Matcher, are more “stochastic” than exponential
distribution. Because there are bulk arrivals of features output
by SIFT Feature Extractor and fed into Feature Matcher, and
the processing times for both feature extraction and feature
matching largely depend on the number of features contained
in each video frame, or equivalently the video contents, which
may change rapidly in contexts such as a soccer game.

In the following experiments, we fix the maximum number
of available processes Kmax = 7 and vary the workload in
terms of the input frame rate λ0. In particular, the inter-arrival
times of the frames in seconds are uniformly distributed in
[1/8, 1/2] and [1/9, 1/3] so that λ0 equals 5 and 6 frames per
second for Figure 10(a) and Figure 10(b), respectively.

As shown in Figure 10, the bars labeled “Measured” rep-
resent the real tuple average sojourn times measured during
the experiment; the bars labeled “M/M/k” represent E[T ]
calculated by the basic M/M/k OQNs model in Equation (1);
and the bars labeled “GI/G/k” represent E[T ] calculated
by the extended GI/G/k OQNs model in Equation (5).
In each subplot, we show the best two configurations
in terms of the average sojourn times,2 i.e., (2:4:1) vs.
(3:3:1), where (x1:x2:x3) denotes the number of executors
assigned to the SIFT Feature Extractor, Feature matcher and

2To simplify the presentation, we only show the results of the best and
second-best configurations with the results of other configurations omitted.
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Matching aggregator, respectively. We make the following two
observations:

(i) The M/M/k model produces a higher degree of underes-
timation on E[T ] with respect to the measured average sojourn
time when the input rate λ0 increases from Figure 10(a) to
Figure 10(b). This is because heavier workload leads to higher
proportion of queuing time in the total sojourn time. The
extended GI/G/k model provides more accurate estimations
due to the compensation term (ai+si)/2 on the queuing delay
in Equation (5). This observation is also consistent with the
conclusions made in [42].

(ii) As shown in both sub-figures, the M/M/k model
would prefer the configuration (3:3:1), because it results in
lower E[T ] than that of (2:4:1); in contrast, the extended
GI/G/k model suggests (2:4:1), which is the de facto optimal
configuration according to the measured average sojourn time.

Based on the above observations, we summarize that DRS
equipped with the M/M/k basic model is applicable of
inferring optimal configurations for most stream data analytics
applications. Only when the tuple inter-arrival and processing
times have larger variances than those of the exponential
distributions, and the operators have heavy workloads, i.e., λ0

is not small, do we consider the extended GI/G/k model.

VI. CONCLUSION

This paper proposes DRS, a dynamic resource scaling
framework for real-time cloud-based stream data analytics
systems. DRS overcomes several fundamental challenges,
including the estimation of the required resources necessary
for satisfying real-time requirements, effective and efficient
resource provisioning and scheduling, and efficient imple-
mentation of such a scheduler in a cloud-based stream data
analytics system. The performance model of DRS is based
on rigorous queuing theory, and it demonstrates robust per-
formance even when the underlying conditions of the theory
are not fully satisfied. In addition, we have integrated DRS
into a popular system Apache Storm, and evaluated it by con-
ducting extensive experiments based on real applications and
datasets.

Regarding future work, we plan to investigate efficient
strategies for migrating the system from the current resource
configuration to the new one recommended by DRS. This step
should minimize additional overhead and result latency during
migration, as well as the migration duration, (e.g., [47]).

APPENDIX

OVERVIEW OF STORM AND DRS IMPLEMENTATIONS

An application running on Storm is defined by a topology,
with vertices as user-defined operators (containing computa-
tion logics) and edges as indicators of data flows between
operators. There are two types of operators in Storm, spouts
and bolts. A spout acts as a data source, which con-
nects to external streaming sources. Bolts include all other
(i.e., non-source) operators. Each operator contains one or
more processors, called executors, running on different servers.

Storm supports dynamically “re-scaling” an operator (spout
or a bolt), which changes its number of executors. This is

implemented by decoupling the routing logics from the com-
putation logics. The routing logics remain the same even when
new executors are added. Storm’s implementation is based
on a partitioning scheme on each operator (spout or bolt),
in which each partition is called a task. When an operator
scales out (respectively in), the number of executors of the
operators increases (decreases), with the tasks reassigned to the
executors. In particular, there are different partitioning rules
supported by Storm, e.g., shuffle, field and direct grouping.
We refer the reader to [29] for details of the partitioning rules.

Given the architecture of Storm system, resource
allocation/re-allocation can be controlled by assigning
different numbers of executors to operators. Storm also
provides an internal mechanism for migrating to a new
resource configuration, called re-balancing. Simply put, the
re-balancing mechanism suspends the entire system, e.g.,
by shutting down all the Java Virtual Machines (JVMs),
modifies the executor to operator mappings and routings,
and finally resumes the system. Hence, the response time
becomes very high during re-balancing. Therefore, in the real
implementation of DRS and the experiment, we developed
and used our own version, which involves coding at the
Storm core layer in Clojure, of the re-balancing mechanism,
with significant improvements over Storm’s default version.
Discussions on how to migrate to a new resource configuration
without such costly system-wide suspensions is out of the
scope of this paper. The most essential improvement we have
made is to re-use the JVMs [50]. Finally, Storm provides
a scheduler interface that enables customized executor
assignment strategy, and allows users to specify the operation
frequency of the scheduler.

A. Measurer

We implemented two new system operators (not visible to
users) into the Storm system, called MeasurableSpout and
MeasurableBolt. They wrap a normal bolt/spout, and add mea-
surement logics. The measurement for bolts mainly records the
elapsed time volumes the execution function spends on each
of the incoming tuples. These measured results are collected
periodically by the “DRSMetricCollecor” module, which is
implemented using the Measurement APIs provided by Storm.
To measure the queue related metrics, e.g., the average tuple
arrival rate to each operator i, is more complicated, because
there is no available API we can make use of. Therefore,
we had to modify the source code of the Storm core to add
the measurement logics. Note we have made a pull request
(available at https://github.com/apache/storm/pull/716/ ) for
the modifications. It has been accepted and merged into the
master develop stream of the Storm codebase, and is effective
since Storm version 1.0.0.

B. Configuration Reader

Similarly, the configuration reader reuses the APIs of the
Storm system, which shares the configuration in Zookeeper.

C. Scheduler

Since Storm provides the scheduling APIs, we overrode
the default scheduler implementation by ours which calls
our version of the re-balancing function only when the two



FU et al.: DRS: AUTO-SCALING FOR REAL-TIME STREAM ANALYTICS 3351

conditions are satisfied (i) the current allocation is sub-optimal;
(ii) the elapsed time since the last call on re-allocation exceeds
a pre-defined threshold.

D. Negotiator

The negotiator is at a lower level than the resource man-
ager of the Storm. It is in charge of starting/shutting down
extra/existing physical resources (e.g., physical machines or
virtual machines). Our negotiator module is based on the APIs
of YARN, on top of a Hadoop cluster.

REFERENCES

[1] W. Lam et al., “Muppet: MapReduce-style processing of fast data,” Proc.
VLDB Endowment, vol. 5, no. 12, pp. 1814–1825, Aug. 2012.

[2] Z. Qian et al., “TimeStream: Reliable stream computation in the cloud,”
in Proc. 8th ACM Eur. Conf. Comput. Syst., Apr. 2013, pp. 1–14.

[3] J. Dean and S. Ghemawat, “MapReduce: Simplified data processing on
large clusters,” ACM Commun., vol. 51, no. 1, pp. 107–113, 2008.

[4] F. Li, B. C. Ooi, M. T. Özsu, and S. Wu, “Distributed data management
using MapReduce,” ACM Comput. Surv., vol. 46, no. 3, Jan. 2014,
Art. no. 31.

[5] Hadoop: Fair Scheduler. Accessed on Apr. 8, 2013. [Online]. Available:
http://hadoop.apache.org/docs/r1.2.1/fair_scheduler.html

[6] Hadoop: Capacity Scheduler. Accessed on Apr. 8, 2013. [Online].
Available: http://hadoop.apache.org/docs/r1.2.1/capacity_scheduler.html

[7] M. Zaharia et al., “Delay scheduling: A simple technique for achieving
locality and fairness in cluster scheduling,” in Proc. 5th Eur. Conf.
Comput. Syst., Apr. 2010, pp. 265–278.

[8] R. Pedarsani, J. Walrand, and Y. Zhong, “Scheduling tasks with prece-
dence constraints on multiple servers,” in Proc. 52nd Annu. Allerton
Conf. Commun., Control, Comput. (Allerton), Sep. 2014, pp. 1196–1203.

[9] S. Melnik et al., “Dremel: Interactive analysis of Web-scale datasets,”
Proc. VLDB Endowment, vol. 3, nos. 1–2, pp. 330–339, Sep. 2010.

[10] M. Traverso. Presto: Interacting With Petabytes of Data at
Facebook. 2013. [Online]. Available: https://www.facebook.com/notes/
facebook-engineering/presto-interacting-with-petabytes-of-data-at-
facebook/10151786197628920/

[11] S. Zhang, Y. Yang, W. Fan, L. Lan, and M. Yuan, “OceanRT: Real-time
analytics over large temporal data,” in Proc. ACM SIGMOD, Jun. 2014,
pp. 1099–1102.

[12] S. Zhang, Y. Yang, W. Fan, and M. Winslett, “Design and imple-
mentation of a real-time interactive analytics system for large spatio-
temporal data,” Proc. VLDB Endowment, vol. 7, no. 13, pp. 1754–1759,
Aug. 2014.

[13] Z. Zhang, H. Shu, Z. Chong, H. Lu, and Y. Yang, “C-Cube: Elastic
continuous clustering in the cloud,” in Proc. IEEE 29th Int. Conf. Data
Eng. (ICDE), Apr. 2013, pp. 577–588.

[14] A. Thusoo et al., “Hive—A petabyte scale data warehouse using
Hadoop,” in Proc. IEEE 26th Int. Conf. Data Eng. (ICDE), Mar. 2010,
pp. 996–1005.

[15] B. Hindman et al., “Mesos: A platform for fine-grained resource sharing
in the data center,” in Proc. USENIX NSDI, 2011, pp. 1–14.

[16] V. K. Vavilapalli et al., “Apache Hadoop YARN: Yet another resource
negotiator,” in Proc. 4th Annu. Symp. Cloud Comput., 2013, Art. no. 5.

[17] Z. Zhang, R. T. B. Ma, J. Ding, and Y. Yang, “ABACUS: An auction-
based approach to cloud service differentiation,” in Proc. IEEE Int. Conf.
Cloud Eng., Mar. 2013, pp. 292–301.

[18] A. Arasu et al., “STREAM: The stanford stream data manager (demon-
stration description),” in Proc. ACM SIGMOD Int. Conf. Manage. Data,
Jun. 2003, p. 665.

[19] A. Arasu, S. Babu, and J. Widom, “The CQL continuous query language:
Semantic foundations and query execution,” Int. J. Very Large Data
Bases, vol. 15, no. 2, pp. 121–142, Jun. 2006.

[20] S. Babu, K. Munagalat, J. Widom, and R. Motwani, “Adaptive caching
for continuous queries,” in Proc. 21st Int. Conf. Data Eng. (ICDE),
Apr. 2005, pp. 118–129.

[21] D. J. Abadi et al., “Aurora: A new model and architecture for data stream
management,” VLDB J., vol. 12, no. 2, pp. 120–139, 2003.

[22] C. Cranor, T. Johnson, O. Spataschek, and V. Shkapenyuk, “Gigascope:
A stream database for network applications,” in Proc. ACM SIGMOD
Int. Conf. Manage. Data, Jun. 2003, pp. 647–651.

[23] S. Chandrasekaran et al., “TelegraphCQ: Continuous dataflow process-
ing,” in Proc. ACM SIGMOD Int. Conf. Manage. Data, Jun. 2003, p. 668.

[24] H. Andrade, B. Gedik, K.-L. Wu, and P. S. Yu, “Processing high data
rate streams in system S,” J. Parallel Distrib. Comput., vol. 71, no. 2,
pp. 145–156, Feb. 2011.

[25] B. Babcock, S. Babu, M. Datar, R. Motwani, and D. Thomas, “Operator
scheduling in data stream systems,” Int. J. Very Large Data Bases,
vol. 13, no. 4, pp. 333–353, Dec. 2004.

[26] L. Wang et al., “Elastic pipelining in an in-memory database cluster,”
in Proc. ACM SIGMOD, Jun./Jul. 2016, pp. 1279–1294.

[27] D. J. Abadi et al., “The design of the borealis stream processing engine,”
in Proc. Conf. Innov. Data Syst. Res., vol. 5. 2005, pp. 277–289.

[28] M. Zaharia, T. Das, H. Li, S. Shenker, and I. Stoica, “Discretized
streams: An efficient and fault-tolerant model for stream processing on
large clusters,” in Proc. USENIX Conf. Hot Topics Cloud Comput., 2012,
p. 10.

[29] A. Toshniwal et al., “Storm@twitter,” in Proc. ACM SIGMOD,
Jun. 2014, pp. 147–156.

[30] S. Kulkarni et al., “Twitter heron: Stream processing at scale,” in Proc.
ACM SIGMOD, Jun. 2015, pp. 239–250.

[31] L. Neumeyer, B. Robbins, A. Nair, and A. Kesari, “S4: Distributed
stream computing platform,” in Proc. IEEE Int. Conf. Data Mining
Workshops (ICDMW), Dec. 2010, pp. 170–177.

[32] S. A. Noghabi et al., “Samza: Stateful scalable stream processing at
LinkedIn,” Proc. VLDB Endowment, vol. 10, no. 12, pp. 1634–1645,
2017.

[33] R. L. Collins and L. P. Carloni, “Flexible filters: Load balancing
through backpressure for stream programs,” in Proc. 7th ACM Int. Conf.
Embedded Softw., Oct. 2009, pp. 205–214.

[34] Y. Xing, S. Zdonik, and J.-H. Hwang, “Dynamic load distribution in the
borealis stream processor,” in Proc. 21st Int. Conf. Data Eng. (ICDE),
Apr. 2005, pp. 791–802.

[35] B. Gedik, “Partitioning functions for stateful data parallelism
in stream processing,” VLDB J., vol. 23, no. 4, pp. 517–539,
Aug. 2014.

[36] G. R. Bitran and R. Morabito, “State-of-the-art survey: Open queue-
ing networks: Optimization and performance evaluation models for
discrete manufacturing systems,” Prod. Oper. Manage., vol. 5, no. 2,
pp. 163–193, Jun. 1996.

[37] T. Z. J. Fu et al., “DRS: Dynamic resource scheduling for real-time
analytics over fast streams,” in Proc. IEEE 35th Int. Conf. Distrib.
Comput. Syst. (ICDCS), Jun. 2015, pp. 411–420.

[38] H. C. Tijms, Stochastic Modelling and Analysis: A Computational
Approach. Hoboken, NJ, USA: Wiley, 1986.

[39] J. R. Jackson, “Jobshop-like queueing systems,” Manage. Sci., vol. 10,
no. 1, pp. 131–142, Oct. 1963.

[40] R. Nelson, D. Towsley, and A. N. Tantawi, “Performance analysis of
parallel processing systems,” IEEE Trans. Softw. Eng., vol. 14, no. 4,
pp. 532–540, Apr. 1988.

[41] W. Whitt, “Approximations for the GI/G/m queue,” Prod. Oper. Man-
age., vol. 2, no. 2, pp. 114–161, Jun. 1993.

[42] M. van Vliet and A. H. G. R. Kan, “Machine allocation algorithms for
job shop manufacturing,” J. Intell. Manuf., vol. 2, no. 2, pp. 83–94,
Apr. 1991.

[43] K. Ousterhout, R. Rasti, S. Ratnasamy, S. Shenker, and B.-G. Chun,
“Making sense of performance in data analytics frameworks,” in Proc.
USENIX Symp. NSDI, 2015, pp. 293–307.

[44] M. A. Soliman et al., “Orca: A modular query optimizer architecture
for big data,” in Proc. ACM SIGMOD, Jun. 2014, pp. 337–348.

[45] C. Mitchell, Y. Geng, and J. Li, “Using one-sided RDMA reads to build
a fast, CPU-efficient key-value store,” in Proc. USENIX Annu. Tech.
Conf., 2013, pp. 103–114.

[46] M. E. Dyer and L. G. Proll, “On the validity of marginal analysis
for allocating servers in M/M/c queues,” Manage. Sci., vol. 23, no. 9,
pp. 1019–1022, May 1977.

[47] J. Ding et al., “Optimal operator state migration for elastic data stream
processing,” CoRR, vol. abs/1501.03619, 2015. [Online]. Available:
http://arxiv.org/abs/1501.03619

[48] T. Lindeberg, “Scale invariant feature transform,” Scholarpedia, vol. 7,
no. 5, p. 10491, 2012.

[49] D. Burdick, M. Calimlim, and J. Gehrke, “MAFIA: A maximal frequent
itemset algorithm for transactional databases,” in Proc. 17th Int. Conf.
Data Eng. (ICDE), Apr. 2001, pp. 443–452.

[50] M. Yang and R. T. B. Ma, “Smooth task migration in apache storm,” in
Proc. ACM SIGMOD, Jun. 2015, pp. 2067–2068.

[51] O. Boxma, A. H. G. R. Kan, and M. Van Vliet, “Machine allocation
problems in manufacturing networks,” Eur. J. Oper. Res., vol. 45, no. 1,
pp. 47–54, Mar. 1990.



3352 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 25, NO. 6, DECEMBER 2017

Tom Z. J. Fu received the B.Eng. degree from
Shanghai Jiao Tong University in 2006, and the
M.Phil. and Ph.D. degrees from The Chinese Univer-
sity of Hong Kong in 2008 and 2013, respectively,
all in information engineering. He is currently a
Research Scientist with the Advanced Digital Sci-
ences Center, Illinois at Singapore Pte Ltd. His
research interests include cloud computing and real-
time stream analytics, software defined network
(SDN), P2P streaming systems, Internet measure-
ment, and academic social network.

Jianbing Ding received the B.E. degree from the
Nanjing University of Post and Telecommunications
in 2008, the master’s degree from the University
of Science and Technology of China in 2011, and
the Ph.D. degree from the School of Data and
Computer Science, Sun Yat-sen University, in 2016.
His research interests are mainly in cloud computing
and large-scale information retrieval systems.

Richard T. B. Ma (SM’16) received the B.Sc.
degree (Hons.) in computer science and the M.Phil.
degree in computer science and engineering from
The Chinese University of Hong Kong, in 2002
and 2004, respectively, and the Ph.D. degree in
electrical engineering from Columbia University in
2010. During his Ph.D. study, he was a Research
Intern with the IBM T. J. Watson Research Cen-
ter, NY, USA, and Telefonica Research, Barcelona,
Spain. He is currently an Assistant Professor with
the School of Computing, National University of

Singapore, and a Research Scientist with the Advanced Digital Science Center,
University of Illinois at Urbana–Champaign. His current research interests
include economics and evolution of the Internet, performance evaluation, big
data analytics, and cloud computing. He was a co-recipient of the Best Paper
Award in the IEEE IC2E 2013, the IEEE ICNP 2014, and the IEEE Workshop
on Smart Data Pricing (SDP) 2015.

Marianne Winslett (A’05) received the Ph.D.
degree in computer science from Stanford University
in 1987. She was with Bell Labs. She has been a
Professor with the Department of Computer Science,
University of Illinois at Urbana-Champaign, since
1987, as an Assistant, Associate, Full, Adjunct,
and currently a Research Professor. Her research
interests lie in information security and in the man-
agement of scientific data. She is a fellow of the
ACM. She received a Presidential Young Investiga-
tor Award from the U.S. National Science Founda-

tion in 1989. She is currently on the editorial boards of the ACM Transactions
on the Web and the ACM Transactions on Information and System Security.
She served as the SIGMOD Vice-Chair from 2001 to 2005. She was on
the editorial boards of the ACM Transactions on Database Systems from
1994 to 2004 and the IEEE TRANSACTIONS ON KNOWLEDGE AND DATA

ENGINEERING from 1994 to 1998.

Yin (David) Yang is currently an Assistant Professor
with the College of Science and Engineering, Hamad
Bin Khalifa University. He has authored extensively
in top venues on differentially private data publi-
cation and analysis, and on query authentication in
outsourced databases. His main research interests
include cloud computing, database security and pri-
vacy, and query optimization. He is actively involved
in cloud-based big data analytics, with a focus on
fast streaming data.

Zhenjie Zhang received the B.S. degree from the
Department of Computer Science and Engineering,
Fudan University, in 2004, and the Ph.D. degree
in computer science from the School of Comput-
ing, National University of Singapore, in 2010.
He is currently a Senior Research Scientist with
Advanced Digital Sciences Center. He has authored
over 20 research papers in database and data mining
venues, including SIGMOD, VLDB, and ICML. His
research interests cover a variety of different topics,
including clustering analysis, nonmetric indexing,

game theory, and data privacy. He has served as a Program Committee
Member of WWW 2010, VLDB 2010, KDD 2010, and APWeb 2011. He
received the Presidents Graduate Fellowship of Singapore in 2007.



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
    /Arial-Black
    /Arial-BoldItalicMT
    /Arial-BoldMT
    /Arial-ItalicMT
    /ArialMT
    /ArialNarrow
    /ArialNarrow-Bold
    /ArialNarrow-BoldItalic
    /ArialNarrow-Italic
    /ArialUnicodeMS
    /BookAntiqua
    /BookAntiqua-Bold
    /BookAntiqua-BoldItalic
    /BookAntiqua-Italic
    /BookmanOldStyle
    /BookmanOldStyle-Bold
    /BookmanOldStyle-BoldItalic
    /BookmanOldStyle-Italic
    /BookshelfSymbolSeven
    /Century
    /CenturyGothic
    /CenturyGothic-Bold
    /CenturyGothic-BoldItalic
    /CenturyGothic-Italic
    /CenturySchoolbook
    /CenturySchoolbook-Bold
    /CenturySchoolbook-BoldItalic
    /CenturySchoolbook-Italic
    /ComicSansMS
    /ComicSansMS-Bold
    /CourierNewPS-BoldItalicMT
    /CourierNewPS-BoldMT
    /CourierNewPS-ItalicMT
    /CourierNewPSMT
    /EstrangeloEdessa
    /FranklinGothic-Medium
    /FranklinGothic-MediumItalic
    /Garamond
    /Garamond-Bold
    /Garamond-Italic
    /Gautami
    /Georgia
    /Georgia-Bold
    /Georgia-BoldItalic
    /Georgia-Italic
    /Haettenschweiler
    /Impact
    /Kartika
    /Latha
    /LetterGothicMT
    /LetterGothicMT-Bold
    /LetterGothicMT-BoldOblique
    /LetterGothicMT-Oblique
    /LucidaConsole
    /LucidaSans
    /LucidaSans-Demi
    /LucidaSans-DemiItalic
    /LucidaSans-Italic
    /LucidaSansUnicode
    /Mangal-Regular
    /MicrosoftSansSerif
    /MonotypeCorsiva
    /MSReferenceSansSerif
    /MSReferenceSpecialty
    /MVBoli
    /PalatinoLinotype-Bold
    /PalatinoLinotype-BoldItalic
    /PalatinoLinotype-Italic
    /PalatinoLinotype-Roman
    /Raavi
    /Shruti
    /Sylfaen
    /SymbolMT
    /Tahoma
    /Tahoma-Bold
    /TimesNewRomanMT-ExtraBold
    /TimesNewRomanPS-BoldItalicMT
    /TimesNewRomanPS-BoldMT
    /TimesNewRomanPS-ItalicMT
    /TimesNewRomanPSMT
    /Trebuchet-BoldItalic
    /TrebuchetMS
    /TrebuchetMS-Bold
    /TrebuchetMS-Italic
    /Tunga-Regular
    /Verdana
    /Verdana-Bold
    /Verdana-BoldItalic
    /Verdana-Italic
    /Vrinda
    /Webdings
    /Wingdings2
    /Wingdings3
    /Wingdings-Regular
    /ZWAdobeF
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 600
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 600
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 400
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <>
    /FRA <>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <>
    /SVE <>
    /ENU (Use these settings to create PDFs that match the "Required"  settings for PDF Specification 4.0)
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


